219 lines
6.0 KiB
C++
219 lines
6.0 KiB
C++
|
|
#include <avr/io.h>
|
|
#include <avr/interrupt.h>
|
|
|
|
#include "HAL_AVR.h"
|
|
#include "Scheduler.h"
|
|
using namespace AP_HAL_AVR;
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
/* AVRScheduler timer interrupt period is controlled by TCNT2.
|
|
* 256-62 gives a 1kHz period. */
|
|
#define RESET_TCNT2_VALUE (256 - 62)
|
|
|
|
/* Static AVRScheduler variables: */
|
|
AVRTimer AVRScheduler::_timer;
|
|
|
|
AP_HAL::TimedProc AVRScheduler::_failsafe = NULL;
|
|
volatile bool AVRScheduler::_timer_suspended = false;
|
|
AP_HAL::TimedProc AVRScheduler::_timer_proc[AVR_SCHEDULER_MAX_TIMER_PROCS] = {NULL};
|
|
AP_HAL::TimedProc AVRScheduler::_defered_timer_proc = NULL;
|
|
uint8_t AVRScheduler::_num_timer_procs = 0;
|
|
bool AVRScheduler::_in_timer_proc = false;
|
|
|
|
|
|
AVRScheduler::AVRScheduler() :
|
|
_delay_cb(NULL),
|
|
_min_delay_cb_ms(65535),
|
|
_nested_atomic_ctr(0)
|
|
{}
|
|
|
|
void AVRScheduler::init(void* _isrregistry) {
|
|
ISRRegistry* isrregistry = (ISRRegistry*) _isrregistry;
|
|
|
|
/* _timer: sets up timer hardware to Arduino defaults, and
|
|
* uses TIMER0 to implement millis & micros */
|
|
_timer.init();
|
|
|
|
/* TIMER2: Setup the overflow interrupt to occur at 1khz. */
|
|
TIMSK2 = 0; /* Disable timer interrupt */
|
|
TCCR2A = 0; /* Normal counting mode */
|
|
TCCR2B = _BV(CS21) | _BV(CS22); /* Prescaler to clk/256 */
|
|
TCNT2 = 0; /* Set count to 0 */
|
|
TIFR2 = _BV(TOV2); /* Clear pending interrupts */
|
|
TIMSK2 = _BV(TOIE2); /* Enable overflow interrupt*/
|
|
/* Register _timer_event to trigger on overflow */
|
|
isrregistry->register_signal(ISR_REGISTRY_TIMER2_OVF, _timer_event);
|
|
}
|
|
|
|
uint32_t AVRScheduler::micros() {
|
|
return _timer.micros();
|
|
}
|
|
|
|
uint32_t AVRScheduler::millis() {
|
|
return _timer.millis();
|
|
}
|
|
|
|
void AVRScheduler::delay_microseconds(uint16_t us) {
|
|
_timer.delay_microseconds(us);
|
|
}
|
|
|
|
void AVRScheduler::delay(uint32_t ms)
|
|
{
|
|
uint32_t start = _timer.micros();
|
|
|
|
while (ms > 0) {
|
|
while ((_timer.micros() - start) >= 1000) {
|
|
ms--;
|
|
if (ms == 0) break;
|
|
start += 1000;
|
|
}
|
|
if (_min_delay_cb_ms <= ms) {
|
|
if (_delay_cb) {
|
|
_delay_cb();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void AVRScheduler::register_delay_callback(AP_HAL::Proc proc,
|
|
uint16_t min_time_ms) {
|
|
_delay_cb = proc;
|
|
_min_delay_cb_ms = min_time_ms;
|
|
}
|
|
|
|
void AVRScheduler::register_timer_process(AP_HAL::TimedProc proc) {
|
|
for (int i = 0; i < _num_timer_procs; i++) {
|
|
if (_timer_proc[i] == proc) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (_num_timer_procs < AVR_SCHEDULER_MAX_TIMER_PROCS) {
|
|
/* this write to _timer_proc can be outside the critical section
|
|
* because that memory won't be used until _num_timer_procs is
|
|
* incremented. */
|
|
_timer_proc[_num_timer_procs] = proc;
|
|
/* _num_timer_procs is used from interrupt, and multiple bytes long. */
|
|
cli();
|
|
_num_timer_procs++;
|
|
sei();
|
|
}
|
|
|
|
}
|
|
|
|
bool AVRScheduler::defer_timer_process(AP_HAL::TimedProc proc) {
|
|
if ( _in_timer_proc || _timer_suspended ) {
|
|
_defered_timer_proc = proc;
|
|
return false;
|
|
} else {
|
|
_timer_suspended = true;
|
|
sei();
|
|
proc(_timer.micros());
|
|
_timer_suspended = false;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
void AVRScheduler::register_timer_failsafe(
|
|
AP_HAL::TimedProc failsafe, uint32_t period_us) {
|
|
/* XXX Assert period_us == 1000 */
|
|
_failsafe = failsafe;
|
|
}
|
|
|
|
void AVRScheduler::suspend_timer_procs() {
|
|
_timer_suspended = true;
|
|
}
|
|
|
|
void AVRScheduler::resume_timer_procs() {
|
|
_timer_suspended = false;
|
|
}
|
|
|
|
void AVRScheduler::_timer_event() {
|
|
// we enable the interrupt again immediately and also enable
|
|
// interrupts. This allows other time critical interrupts to
|
|
// run (such as the serial receive interrupt). We catch the
|
|
// timer calls taking too long using _in_timer_call.
|
|
// This approach also gives us a nice uniform spacing between
|
|
// timer calls
|
|
|
|
TCNT2 = RESET_TCNT2_VALUE;
|
|
sei();
|
|
|
|
uint32_t tnow = _timer.micros();
|
|
if (_in_timer_proc) {
|
|
// the timer calls took longer than the period of the
|
|
// timer. This is bad, and may indicate a serious
|
|
// driver failure. We can't just call the drivers
|
|
// again, as we could run out of stack. So we only
|
|
// call the _failsafe call. It's job is to detect if
|
|
// the drivers or the main loop are indeed dead and to
|
|
// activate whatever failsafe it thinks may help if
|
|
// need be. We assume the failsafe code can't
|
|
// block. If it does then we will recurse and die when
|
|
// we run out of stack
|
|
if (_failsafe != NULL) {
|
|
_failsafe(tnow);
|
|
}
|
|
return;
|
|
}
|
|
_in_timer_proc = true;
|
|
|
|
if (!_timer_suspended) {
|
|
// now call the timer based drivers
|
|
for (int i = 0; i < _num_timer_procs; i++) {
|
|
if (_timer_proc[i] != NULL) {
|
|
_timer_proc[i](tnow);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Run any defered procedures, if they exist.*/
|
|
cli();
|
|
/* Atomic read and clear: */
|
|
AP_HAL::TimedProc defered = _defered_timer_proc;
|
|
_defered_timer_proc = NULL;
|
|
sei();
|
|
if (defered != NULL) {
|
|
_timer_suspended = true;
|
|
defered(tnow);
|
|
_timer_suspended = false;
|
|
}
|
|
|
|
// and the failsafe, if one is setup
|
|
if (_failsafe != NULL) {
|
|
_failsafe(tnow);
|
|
}
|
|
|
|
_in_timer_proc = false;
|
|
}
|
|
|
|
void AVRScheduler::begin_atomic() {
|
|
_nested_atomic_ctr++;
|
|
cli();
|
|
}
|
|
|
|
void AVRScheduler::end_atomic() {
|
|
_nested_atomic_ctr--;
|
|
if (_nested_atomic_ctr == 0) {
|
|
sei();
|
|
}
|
|
}
|
|
|
|
void AVRScheduler::reboot() {
|
|
hal.uartA->println_P(PSTR("GOING DOWN FOR A REBOOT\r\n"));
|
|
hal.scheduler->delay(100);
|
|
|
|
cli();
|
|
/* Making a null pointer call will cause all AVRs to reboot
|
|
* but they may not come back alive properly - we need to setup
|
|
* the IO the way the bootloader would.
|
|
* pch will go back and fix this.
|
|
*/
|
|
void (*fn)(void) = NULL;
|
|
fn();
|
|
|
|
for(;;);
|
|
}
|