AP_HAL_AVR: move scheduler's timer-hw dependent methods to a separate cpp
This commit is contained in:
parent
d9f69923f2
commit
f9e9b8a7ef
@ -26,6 +26,7 @@ namespace AP_HAL_AVR {
|
||||
class APM1RCOutput;
|
||||
class APM2RCOutput;
|
||||
class AVRScheduler;
|
||||
class AVRTimer;
|
||||
class AVRSemaphore;
|
||||
class ISRRegistry;
|
||||
}
|
||||
|
@ -1,4 +1,3 @@
|
||||
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||||
|
||||
#include <avr/io.h>
|
||||
#include <avr/interrupt.h>
|
||||
@ -7,20 +6,15 @@
|
||||
#include "Scheduler.h"
|
||||
using namespace AP_HAL_AVR;
|
||||
|
||||
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
|
||||
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
|
||||
|
||||
extern const AP_HAL::HAL& hal;
|
||||
|
||||
static volatile uint32_t timer0_overflow_count = 0;
|
||||
static volatile uint32_t timer0_millis = 0;
|
||||
static uint8_t timer0_fract = 0;
|
||||
|
||||
/* AVRScheduler timer interrupt period is controlled by TCNT2.
|
||||
* 256-62 gives a 1kHz period. */
|
||||
#define RESET_TCNT2_VALUE (256 - 62)
|
||||
|
||||
/* Static AVRScheduler variables: */
|
||||
AVRTimer AVRScheduler::_timer;
|
||||
|
||||
AP_HAL::TimedProc AVRScheduler::_failsafe = NULL;
|
||||
volatile bool AVRScheduler::_timer_suspended = false;
|
||||
AP_HAL::TimedProc AVRScheduler::_timer_proc[AVR_SCHEDULER_MAX_TIMER_PROCS] = {NULL};
|
||||
@ -38,57 +32,9 @@ AVRScheduler::AVRScheduler() :
|
||||
void AVRScheduler::init(void* _isrregistry) {
|
||||
ISRRegistry* isrregistry = (ISRRegistry*) _isrregistry;
|
||||
|
||||
// this needs to be called before setup() or some functions won't
|
||||
// work there
|
||||
sei();
|
||||
|
||||
// set timer 0 prescale factor to 64
|
||||
// this combination is for the standard 168/328/1280/2560
|
||||
sbi(TCCR0B, CS01);
|
||||
sbi(TCCR0B, CS00);
|
||||
// enable timer 0 overflow interrupt
|
||||
sbi(TIMSK0, TOIE0);
|
||||
|
||||
// timers 1 and 2 are used for phase-correct hardware pwm
|
||||
// this is better for motors as it ensures an even waveform
|
||||
// note, however, that fast pwm mode can achieve a frequency of up
|
||||
// 8 MHz (with a 16 MHz clock) at 50% duty cycle
|
||||
|
||||
TCCR1B = 0;
|
||||
|
||||
// set timer 1 prescale factor to 64
|
||||
sbi(TCCR1B, CS11);
|
||||
sbi(TCCR1B, CS10);
|
||||
// put timer 1 in 8-bit phase correct pwm mode
|
||||
sbi(TCCR1A, WGM10);
|
||||
|
||||
sbi(TCCR3B, CS31); // set timer 3 prescale factor to 64
|
||||
sbi(TCCR3B, CS30);
|
||||
sbi(TCCR3A, WGM30); // put timer 3 in 8-bit phase correct pwm mode
|
||||
|
||||
sbi(TCCR4B, CS41); // set timer 4 prescale factor to 64
|
||||
sbi(TCCR4B, CS40);
|
||||
sbi(TCCR4A, WGM40); // put timer 4 in 8-bit phase correct pwm mode
|
||||
|
||||
sbi(TCCR5B, CS51); // set timer 5 prescale factor to 64
|
||||
sbi(TCCR5B, CS50);
|
||||
sbi(TCCR5A, WGM50); // put timer 5 in 8-bit phase correct pwm mode
|
||||
|
||||
// set a2d prescale factor to 128
|
||||
// 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
|
||||
// XXX: this will not work properly for other clock speeds, and
|
||||
// this code should use F_CPU to determine the prescale factor.
|
||||
sbi(ADCSRA, ADPS2);
|
||||
sbi(ADCSRA, ADPS1);
|
||||
sbi(ADCSRA, ADPS0);
|
||||
|
||||
// enable a2d conversions
|
||||
sbi(ADCSRA, ADEN);
|
||||
|
||||
// the bootloader connects pins 0 and 1 to the USART; disconnect them
|
||||
// here so they can be used as normal digital i/o; they will be
|
||||
// reconnected in Serial.begin()
|
||||
UCSR0B = 0;
|
||||
/* _timer: sets up timer hardware to Arduino defaults, and
|
||||
* uses TIMER0 to implement millis & micros */
|
||||
_timer.init();
|
||||
|
||||
/* TIMER2: Setup the overflow interrupt to occur at 1khz. */
|
||||
TIMSK2 = 0; /* Disable timer interrupt */
|
||||
@ -101,88 +47,24 @@ void AVRScheduler::init(void* _isrregistry) {
|
||||
isrregistry->register_signal(ISR_REGISTRY_TIMER2_OVF, _timer_event);
|
||||
}
|
||||
|
||||
#define clockCyclesPerMicrosecond() ( F_CPU / 1000000L )
|
||||
#define clockCyclesToMicroseconds(a) ( ((a) * 1000L) / (F_CPU / 1000L) )
|
||||
|
||||
// the prescaler is set so that timer0 ticks every 64 clock cycles, and the
|
||||
// the overflow handler is called every 256 ticks.
|
||||
#define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256))
|
||||
|
||||
// the whole number of milliseconds per timer0 overflow
|
||||
#define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000)
|
||||
|
||||
// the fractional number of milliseconds per timer0 overflow. we shift right
|
||||
// by three to fit these numbers into a byte. (for the clock speeds we care
|
||||
// about - 8 and 16 MHz - this doesn't lose precision.)
|
||||
#define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3)
|
||||
#define FRACT_MAX (1000 >> 3)
|
||||
|
||||
|
||||
SIGNAL(TIMER0_OVF_vect)
|
||||
{
|
||||
// copy these to local variables so they can be stored in registers
|
||||
// (volatile variables must be read from memory on every access)
|
||||
uint32_t m = timer0_millis;
|
||||
uint8_t f = timer0_fract;
|
||||
|
||||
m += MILLIS_INC;
|
||||
f += FRACT_INC;
|
||||
if (f >= FRACT_MAX) {
|
||||
f -= FRACT_MAX;
|
||||
m += 1;
|
||||
}
|
||||
|
||||
timer0_fract = f;
|
||||
timer0_millis = m;
|
||||
timer0_overflow_count++;
|
||||
}
|
||||
|
||||
uint32_t AVRScheduler::millis()
|
||||
{
|
||||
uint32_t m;
|
||||
uint8_t oldSREG = SREG;
|
||||
|
||||
// disable interrupts while we read timer0_millis or we might get an
|
||||
// inconsistent value (e.g. in the middle of a write to timer0_millis)
|
||||
cli();
|
||||
m = timer0_millis;
|
||||
SREG = oldSREG;
|
||||
|
||||
return m;
|
||||
}
|
||||
|
||||
/* micros() is essentially a static method, but we need it to be available
|
||||
* via virtual dispatch through the hal. */
|
||||
uint32_t AVRScheduler::micros() {
|
||||
return _micros();
|
||||
return _timer.micros();
|
||||
}
|
||||
|
||||
/* _micros() is the implementation of micros() as a static private method
|
||||
* so we can use it from inside _timer_event() without virtual dispatch. */
|
||||
uint32_t AVRScheduler::_micros() {
|
||||
uint32_t m;
|
||||
uint8_t t;
|
||||
|
||||
uint8_t oldSREG = SREG;
|
||||
cli();
|
||||
uint32_t AVRScheduler::millis() {
|
||||
return _timer.millis();
|
||||
}
|
||||
|
||||
m = timer0_overflow_count;
|
||||
t = TCNT0;
|
||||
|
||||
if ((TIFR0 & _BV(TOV0)) && (t < 255))
|
||||
m++;
|
||||
|
||||
SREG = oldSREG;
|
||||
|
||||
return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond());
|
||||
void AVRScheduler::delay_microseconds(uint16_t us) {
|
||||
_timer.delay_microseconds(us);
|
||||
}
|
||||
|
||||
void AVRScheduler::delay(uint32_t ms)
|
||||
{
|
||||
uint32_t start = _micros();
|
||||
uint32_t start = _timer.micros();
|
||||
|
||||
while (ms > 0) {
|
||||
while ((micros() - start) >= 1000) {
|
||||
while ((_timer.micros() - start) >= 1000) {
|
||||
ms--;
|
||||
if (ms == 0) break;
|
||||
start += 1000;
|
||||
@ -195,30 +77,6 @@ void AVRScheduler::delay(uint32_t ms)
|
||||
}
|
||||
}
|
||||
|
||||
/* Delay for the given number of microseconds. Assumes a 16 MHz clock. */
|
||||
void AVRScheduler::delay_microseconds(uint16_t us)
|
||||
{
|
||||
// for the 16 MHz clock on most Arduino boards
|
||||
// for a one-microsecond delay, simply return. the overhead
|
||||
// of the function call yields a delay of approximately 1 1/8 us.
|
||||
if (--us == 0)
|
||||
return;
|
||||
|
||||
// the following loop takes a quarter of a microsecond (4 cycles)
|
||||
// per iteration, so execute it four times for each microsecond of
|
||||
// delay requested.
|
||||
us <<= 2;
|
||||
|
||||
// account for the time taken in the preceeding commands.
|
||||
us -= 2;
|
||||
|
||||
// busy wait
|
||||
__asm__ __volatile__ (
|
||||
"1: sbiw %0,1" "\n\t" // 2 cycles
|
||||
"brne 1b" : "=w" (us) : "0" (us) // 2 cycles
|
||||
);
|
||||
}
|
||||
|
||||
void AVRScheduler::register_delay_callback(AP_HAL::Proc proc,
|
||||
uint16_t min_time_ms) {
|
||||
_delay_cb = proc;
|
||||
@ -252,7 +110,7 @@ bool AVRScheduler::defer_timer_process(AP_HAL::TimedProc proc) {
|
||||
} else {
|
||||
_timer_suspended = true;
|
||||
sei();
|
||||
proc(micros());
|
||||
proc(_timer.micros());
|
||||
_timer_suspended = false;
|
||||
return true;
|
||||
}
|
||||
@ -283,7 +141,7 @@ void AVRScheduler::_timer_event() {
|
||||
TCNT2 = RESET_TCNT2_VALUE;
|
||||
sei();
|
||||
|
||||
uint32_t tnow = _micros();
|
||||
uint32_t tnow = _timer.micros();
|
||||
if (_in_timer_proc) {
|
||||
// the timer calls took longer than the period of the
|
||||
// timer. This is bad, and may indicate a serious
|
||||
|
@ -7,6 +7,16 @@
|
||||
|
||||
#define AVR_SCHEDULER_MAX_TIMER_PROCS 4
|
||||
|
||||
/* Class for managing the AVR Timers: */
|
||||
class AP_HAL_AVR::AVRTimer {
|
||||
public:
|
||||
static void init();
|
||||
static uint32_t millis();
|
||||
static uint32_t micros();
|
||||
static void delay_microseconds(uint16_t us);
|
||||
};
|
||||
|
||||
/* Scheduler implementation: */
|
||||
class AP_HAL_AVR::AVRScheduler : public AP_HAL::Scheduler {
|
||||
public:
|
||||
AVRScheduler();
|
||||
@ -30,16 +40,13 @@ public:
|
||||
void reboot();
|
||||
|
||||
private:
|
||||
/* Implementation specific methods: */
|
||||
static AVRTimer _timer;
|
||||
|
||||
/* timer_event() is static so it can be called from an interrupt.
|
||||
* (This is effectively a singleton class.)
|
||||
* _prefix: this method must be public */
|
||||
static void _timer_event();
|
||||
|
||||
/* _micros() is the implementation of micros() as a static private method
|
||||
* so we can use it from inside _timer_event() without virtual dispatch. */
|
||||
static uint32_t _micros();
|
||||
|
||||
AP_HAL::Proc _delay_cb;
|
||||
uint16_t _min_delay_cb_ms;
|
||||
static AP_HAL::TimedProc _failsafe;
|
||||
|
161
libraries/AP_HAL_AVR/Scheduler_Timer.cpp
Normal file
161
libraries/AP_HAL_AVR/Scheduler_Timer.cpp
Normal file
@ -0,0 +1,161 @@
|
||||
|
||||
#include <avr/io.h>
|
||||
#include <avr/interrupt.h>
|
||||
|
||||
#include "HAL_AVR.h"
|
||||
#include "Scheduler.h"
|
||||
using namespace AP_HAL_AVR;
|
||||
|
||||
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
|
||||
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
|
||||
|
||||
static volatile uint32_t timer0_overflow_count = 0;
|
||||
static volatile uint32_t timer0_millis = 0;
|
||||
static uint8_t timer0_fract = 0;
|
||||
|
||||
|
||||
void AVRTimer::init() {
|
||||
// this needs to be called before setup() or some functions won't
|
||||
// work there
|
||||
sei();
|
||||
|
||||
// set timer 0 prescale factor to 64
|
||||
// this combination is for the standard 168/328/1280/2560
|
||||
sbi(TCCR0B, CS01);
|
||||
sbi(TCCR0B, CS00);
|
||||
// enable timer 0 overflow interrupt
|
||||
sbi(TIMSK0, TOIE0);
|
||||
|
||||
// timers 1 and 2 are used for phase-correct hardware pwm
|
||||
// this is better for motors as it ensures an even waveform
|
||||
// note, however, that fast pwm mode can achieve a frequency of up
|
||||
// 8 MHz (with a 16 MHz clock) at 50% duty cycle
|
||||
|
||||
TCCR1B = 0;
|
||||
|
||||
// set timer 1 prescale factor to 64
|
||||
sbi(TCCR1B, CS11);
|
||||
sbi(TCCR1B, CS10);
|
||||
// put timer 1 in 8-bit phase correct pwm mode
|
||||
sbi(TCCR1A, WGM10);
|
||||
|
||||
sbi(TCCR3B, CS31); // set timer 3 prescale factor to 64
|
||||
sbi(TCCR3B, CS30);
|
||||
sbi(TCCR3A, WGM30); // put timer 3 in 8-bit phase correct pwm mode
|
||||
|
||||
sbi(TCCR4B, CS41); // set timer 4 prescale factor to 64
|
||||
sbi(TCCR4B, CS40);
|
||||
sbi(TCCR4A, WGM40); // put timer 4 in 8-bit phase correct pwm mode
|
||||
|
||||
sbi(TCCR5B, CS51); // set timer 5 prescale factor to 64
|
||||
sbi(TCCR5B, CS50);
|
||||
sbi(TCCR5A, WGM50); // put timer 5 in 8-bit phase correct pwm mode
|
||||
|
||||
// set a2d prescale factor to 128
|
||||
// 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
|
||||
// XXX: this will not work properly for other clock speeds, and
|
||||
// this code should use F_CPU to determine the prescale factor.
|
||||
sbi(ADCSRA, ADPS2);
|
||||
sbi(ADCSRA, ADPS1);
|
||||
sbi(ADCSRA, ADPS0);
|
||||
|
||||
// enable a2d conversions
|
||||
sbi(ADCSRA, ADEN);
|
||||
|
||||
// the bootloader connects pins 0 and 1 to the USART; disconnect them
|
||||
// here so they can be used as normal digital i/o; they will be
|
||||
// reconnected in Serial.begin()
|
||||
UCSR0B = 0;
|
||||
}
|
||||
|
||||
#define clockCyclesPerMicrosecond() ( F_CPU / 1000000L )
|
||||
#define clockCyclesToMicroseconds(a) ( ((a) * 1000L) / (F_CPU / 1000L) )
|
||||
|
||||
// the prescaler is set so that timer0 ticks every 64 clock cycles, and the
|
||||
// the overflow handler is called every 256 ticks.
|
||||
#define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256))
|
||||
|
||||
// the whole number of milliseconds per timer0 overflow
|
||||
#define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000)
|
||||
|
||||
// the fractional number of milliseconds per timer0 overflow. we shift right
|
||||
// by three to fit these numbers into a byte. (for the clock speeds we care
|
||||
// about - 8 and 16 MHz - this doesn't lose precision.)
|
||||
#define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3)
|
||||
#define FRACT_MAX (1000 >> 3)
|
||||
|
||||
|
||||
SIGNAL(TIMER0_OVF_vect)
|
||||
{
|
||||
// copy these to local variables so they can be stored in registers
|
||||
// (volatile variables must be read from memory on every access)
|
||||
uint32_t m = timer0_millis;
|
||||
uint8_t f = timer0_fract;
|
||||
|
||||
m += MILLIS_INC;
|
||||
f += FRACT_INC;
|
||||
if (f >= FRACT_MAX) {
|
||||
f -= FRACT_MAX;
|
||||
m += 1;
|
||||
}
|
||||
|
||||
timer0_fract = f;
|
||||
timer0_millis = m;
|
||||
timer0_overflow_count++;
|
||||
}
|
||||
|
||||
uint32_t AVRTimer::millis()
|
||||
{
|
||||
uint32_t m;
|
||||
uint8_t oldSREG = SREG;
|
||||
|
||||
// disable interrupts while we read timer0_millis or we might get an
|
||||
// inconsistent value (e.g. in the middle of a write to timer0_millis)
|
||||
cli();
|
||||
m = timer0_millis;
|
||||
SREG = oldSREG;
|
||||
|
||||
return m;
|
||||
}
|
||||
|
||||
uint32_t AVRTimer::micros() {
|
||||
uint32_t m;
|
||||
uint8_t t;
|
||||
|
||||
uint8_t oldSREG = SREG;
|
||||
cli();
|
||||
|
||||
m = timer0_overflow_count;
|
||||
t = TCNT0;
|
||||
|
||||
if ((TIFR0 & _BV(TOV0)) && (t < 255))
|
||||
m++;
|
||||
|
||||
SREG = oldSREG;
|
||||
|
||||
return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond());
|
||||
}
|
||||
|
||||
/* Delay for the given number of microseconds. Assumes a 16 MHz clock. */
|
||||
void AVRTimer::delay_microseconds(uint16_t us)
|
||||
{
|
||||
// for the 16 MHz clock on most Arduino boards
|
||||
// for a one-microsecond delay, simply return. the overhead
|
||||
// of the function call yields a delay of approximately 1 1/8 us.
|
||||
if (--us == 0)
|
||||
return;
|
||||
|
||||
// the following loop takes a quarter of a microsecond (4 cycles)
|
||||
// per iteration, so execute it four times for each microsecond of
|
||||
// delay requested.
|
||||
us <<= 2;
|
||||
|
||||
// account for the time taken in the preceeding commands.
|
||||
us -= 2;
|
||||
|
||||
// busy wait
|
||||
__asm__ __volatile__ (
|
||||
"1: sbiw %0,1" "\n\t" // 2 cycles
|
||||
"brne 1b" : "=w" (us) : "0" (us) // 2 cycles
|
||||
);
|
||||
}
|
Loading…
Reference in New Issue
Block a user