Ardupilot2/libraries/AP_InertialSensor/AP_InertialSensor_HIL.cpp

131 lines
3.2 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include "AP_InertialSensor_HIL.h"
#include <AP_HAL.h>
const extern AP_HAL::HAL& hal;
AP_InertialSensor_HIL::AP_InertialSensor_HIL() :
AP_InertialSensor(),
_sample_period_usec(0),
_last_sample_usec(0)
{
_accel[0] = Vector3f(0, 0, -GRAVITY_MSS);
}
uint16_t AP_InertialSensor_HIL::_init_sensor( Sample_rate sample_rate ) {
switch (sample_rate) {
case RATE_50HZ:
_sample_period_usec = 20000;
break;
case RATE_100HZ:
_sample_period_usec = 10000;
break;
case RATE_200HZ:
_sample_period_usec = 5000;
break;
case RATE_400HZ:
_sample_period_usec = 2500;
break;
}
return AP_PRODUCT_ID_NONE;
}
/*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */
bool AP_InertialSensor_HIL::update( void ) {
uint32_t now = hal.scheduler->micros();
_last_sample_usec = now;
return true;
}
float AP_InertialSensor_HIL::get_delta_time() const {
return _sample_period_usec * 1.0e-6f;
}
float AP_InertialSensor_HIL::get_gyro_drift_rate(void) {
// 0.5 degrees/second/minute
return ToRad(0.5/60);
}
bool AP_InertialSensor_HIL::_sample_available()
{
uint32_t tnow = hal.scheduler->micros();
bool have_sample = false;
while (tnow - _last_sample_usec > _sample_period_usec) {
have_sample = true;
_last_sample_usec += _sample_period_usec;
}
return have_sample;
}
bool AP_InertialSensor_HIL::wait_for_sample(uint16_t timeout_ms)
{
if (_sample_available()) {
return true;
}
uint32_t start = hal.scheduler->micros();
while ((hal.scheduler->millis() - start) < timeout_ms) {
uint32_t tnow = hal.scheduler->micros();
uint32_t tdelay = (_last_sample_usec + _sample_period_usec) - tnow;
if (tdelay < 100000) {
hal.scheduler->delay_microseconds(tdelay);
}
if (_sample_available()) {
return true;
}
}
return false;
}
void AP_InertialSensor_HIL::set_accel(uint8_t instance, const Vector3f &accel)
{
if (instance >= INS_MAX_INSTANCES) {
return;
}
_previous_accel[instance] = _accel[instance];
_accel[instance] = accel;
_last_accel_usec[instance] = hal.scheduler->micros();
}
void AP_InertialSensor_HIL::set_gyro(uint8_t instance, const Vector3f &gyro)
{
if (instance >= INS_MAX_INSTANCES) {
return;
}
_gyro[instance] = gyro;
_last_gyro_usec[instance] = hal.scheduler->micros();
}
bool AP_InertialSensor_HIL::get_gyro_health(uint8_t instance) const
{
if (instance >= INS_MAX_INSTANCES) {
return false;
}
return (hal.scheduler->micros() - _last_gyro_usec[instance]) < 40000;
}
bool AP_InertialSensor_HIL::get_accel_health(uint8_t instance) const
{
if (instance >= INS_MAX_INSTANCES) {
return false;
}
return (hal.scheduler->micros() - _last_accel_usec[instance]) < 40000;
}
uint8_t AP_InertialSensor_HIL::get_gyro_count(void) const
{
if (get_gyro_health(1)) {
return 2;
}
return 1;
}
uint8_t AP_InertialSensor_HIL::get_accel_count(void) const
{
if (get_accel_health(1)) {
return 2;
}
return 1;
}