../../libraries/AP_NavEKF2/AP_NavEKF2_core.cpp: In member function ‘void NavEKF2_core::InitialiseVariables()’:
../../libraries/AP_NavEKF2/AP_NavEKF2_core.cpp:343:50: warning: ‘void* memset(void*, int, size_t)’ clearing an object of non-trivial type ‘struct NavEKF2_core::ext_nav_vel_elements’; use assignment or value-initialization instead [-Wclass-memaccess]
343 | memset(&extNavVelNew, 0, sizeof(extNavVelNew));
| ^
In file included from ../../libraries/AP_NavEKF2/AP_NavEKF2_core.cpp:4:
../../libraries/AP_NavEKF2/AP_NavEKF2_core.h:518:12: note: ‘struct NavEKF2_core::ext_nav_vel_elements’ declared here
518 | struct ext_nav_vel_elements {
| ^~~~~~~~~~~~~~~~~~~~
../../libraries/AP_NavEKF2/AP_NavEKF2_core.cpp:344:58: warning: ‘void* memset(void*, int, size_t)’ clearing an object of non-trivial type ‘struct NavEKF2_core::ext_nav_vel_elements’; use assignment or value-initialization instead [-Wclass-memaccess]
344 | memset(&extNavVelDelayed, 0, sizeof(extNavVelDelayed));
| ^
In file included from ../../libraries/AP_NavEKF2/AP_NavEKF2_core.cpp:4:
../../libraries/AP_NavEKF2/AP_NavEKF2_core.h:518:12: note: ‘struct NavEKF2_core::ext_nav_vel_elements’ declared here
518 | struct ext_nav_vel_elements {
| ^~~~~~~~~~~~~~~~~~~~
Separate prediction and correction steps are required to provide an up to date yaw estimate using IMU prediction before it may be required by SelectMagFusion() whilst still doing the velocity update after GPS data haw been pulled from the buffer by SelectVelPosFusion()
Enables the yaw to be reset in flight to a value estimated from a specialised yaw estimator. This allows faster recovery if taking off with a bad magnetometer and also allows yaw alignment and GPS use to commence in-air when operating without any yaw sensing.
AP_NavEKF2: Add missing accesor functions for default airspeed
this moves intermediate variables from being per-core to being common
between cores. This saves memory on systems with more than one core by
avoiding allocating this memory on every core.
This is an alternative to #11717 which moves memory onto the stack. It
doesn't save as much memory as #11717, but avoids creating large stack
frames
this allows us to learn the gyro biases each lane would need if it had
to switch to another gyro due to a sensor failure. This prevents a
sudden change in gyro bias on IMU failure
this sets a limit on the difference between the earth field from the
WMM tables and the learned earth field inside the EKF. Setting it to
zero disables the feature. A positive value sets the limit in mGauss.
This avoids creating two pointers of different types to the same memory.
Having two pointers to the same memory can lead to the compiler
optimising code such that a write to one pointer is rearranged to be
either before or after a read from the other pointer depending on which
is deemed faster - not a good outcome.
Fix rounding error bug preventing state from updating after initial convergence.
Decouple GPS reference height from published EKf origin height.
Add bitmask parameter to control update and publishing of GPS reference height.
If the GPS receiver selection changes and we are using GPS for height, the
vertical position will be reset to the new GPS height measurement.
correct output observer history when doing a GPS height reset
This can improve position hold performance where it is not practical to have the IMU located at the centroid.
Although this enables the effect of IMU position offsets to be corrected, users will still need to be instructed to place the IMU as close to the vehicle c.g. as practical as correcting for large offsets makes the velocity estimates noisy.