AP_NavEKF2: use GPS singleton
This commit is contained in:
parent
aea460df2c
commit
9c8466dc03
@ -603,7 +603,7 @@ void NavEKF2::check_log_write(void)
|
||||
logging.log_compass = false;
|
||||
}
|
||||
if (logging.log_gps) {
|
||||
DataFlash_Class::instance()->Log_Write_GPS(_ahrs->get_gps(), _ahrs->get_gps().primary_sensor(), imuSampleTime_us);
|
||||
DataFlash_Class::instance()->Log_Write_GPS(AP::gps(), AP::gps().primary_sensor(), imuSampleTime_us);
|
||||
logging.log_gps = false;
|
||||
}
|
||||
if (logging.log_baro) {
|
||||
|
@ -420,7 +420,7 @@ bool NavEKF2_core::setOriginLLH(const Location &loc)
|
||||
void NavEKF2_core::setOrigin()
|
||||
{
|
||||
// assume origin at current GPS location (no averaging)
|
||||
EKF_origin = _ahrs->get_gps().location();
|
||||
EKF_origin = AP::gps().location();
|
||||
// if flying, correct for height change from takeoff so that the origin is at field elevation
|
||||
if (inFlight) {
|
||||
EKF_origin.alt += (int32_t)(100.0f * stateStruct.position.z);
|
||||
|
@ -411,8 +411,9 @@ void NavEKF2_core::readGpsData()
|
||||
{
|
||||
// check for new GPS data
|
||||
// do not accept data at a faster rate than 14Hz to avoid overflowing the FIFO buffer
|
||||
if (_ahrs->get_gps().last_message_time_ms() - lastTimeGpsReceived_ms > 70) {
|
||||
if (_ahrs->get_gps().status() >= AP_GPS::GPS_OK_FIX_3D) {
|
||||
const AP_GPS &gps = AP::gps();
|
||||
if (gps.last_message_time_ms() - lastTimeGpsReceived_ms > 70) {
|
||||
if (gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
|
||||
// report GPS fix status
|
||||
gpsCheckStatus.bad_fix = false;
|
||||
|
||||
@ -420,7 +421,7 @@ void NavEKF2_core::readGpsData()
|
||||
secondLastGpsTime_ms = lastTimeGpsReceived_ms;
|
||||
|
||||
// get current fix time
|
||||
lastTimeGpsReceived_ms = _ahrs->get_gps().last_message_time_ms();
|
||||
lastTimeGpsReceived_ms = gps.last_message_time_ms();
|
||||
|
||||
// estimate when the GPS fix was valid, allowing for GPS processing and other delays
|
||||
// ideally we should be using a timing signal from the GPS receiver to set this time
|
||||
@ -433,17 +434,17 @@ void NavEKF2_core::readGpsData()
|
||||
gpsDataNew.time_ms = MAX(gpsDataNew.time_ms,imuDataDelayed.time_ms);
|
||||
|
||||
// Get which GPS we are using for position information
|
||||
gpsDataNew.sensor_idx = _ahrs->get_gps().primary_sensor();
|
||||
gpsDataNew.sensor_idx = gps.primary_sensor();
|
||||
|
||||
// read the NED velocity from the GPS
|
||||
gpsDataNew.vel = _ahrs->get_gps().velocity();
|
||||
gpsDataNew.vel = gps.velocity();
|
||||
|
||||
// Use the speed and position accuracy from the GPS if available, otherwise set it to zero.
|
||||
// Apply a decaying envelope filter with a 5 second time constant to the raw accuracy data
|
||||
float alpha = constrain_float(0.0002f * (lastTimeGpsReceived_ms - secondLastGpsTime_ms),0.0f,1.0f);
|
||||
gpsSpdAccuracy *= (1.0f - alpha);
|
||||
float gpsSpdAccRaw;
|
||||
if (!_ahrs->get_gps().speed_accuracy(gpsSpdAccRaw)) {
|
||||
if (!gps.speed_accuracy(gpsSpdAccRaw)) {
|
||||
gpsSpdAccuracy = 0.0f;
|
||||
} else {
|
||||
gpsSpdAccuracy = MAX(gpsSpdAccuracy,gpsSpdAccRaw);
|
||||
@ -451,7 +452,7 @@ void NavEKF2_core::readGpsData()
|
||||
}
|
||||
gpsPosAccuracy *= (1.0f - alpha);
|
||||
float gpsPosAccRaw;
|
||||
if (!_ahrs->get_gps().horizontal_accuracy(gpsPosAccRaw)) {
|
||||
if (!gps.horizontal_accuracy(gpsPosAccRaw)) {
|
||||
gpsPosAccuracy = 0.0f;
|
||||
} else {
|
||||
gpsPosAccuracy = MAX(gpsPosAccuracy,gpsPosAccRaw);
|
||||
@ -459,7 +460,7 @@ void NavEKF2_core::readGpsData()
|
||||
}
|
||||
gpsHgtAccuracy *= (1.0f - alpha);
|
||||
float gpsHgtAccRaw;
|
||||
if (!_ahrs->get_gps().vertical_accuracy(gpsHgtAccRaw)) {
|
||||
if (!gps.vertical_accuracy(gpsHgtAccRaw)) {
|
||||
gpsHgtAccuracy = 0.0f;
|
||||
} else {
|
||||
gpsHgtAccuracy = MAX(gpsHgtAccuracy,gpsHgtAccRaw);
|
||||
@ -467,16 +468,16 @@ void NavEKF2_core::readGpsData()
|
||||
}
|
||||
|
||||
// check if we have enough GPS satellites and increase the gps noise scaler if we don't
|
||||
if (_ahrs->get_gps().num_sats() >= 6 && (PV_AidingMode == AID_ABSOLUTE)) {
|
||||
if (gps.num_sats() >= 6 && (PV_AidingMode == AID_ABSOLUTE)) {
|
||||
gpsNoiseScaler = 1.0f;
|
||||
} else if (_ahrs->get_gps().num_sats() == 5 && (PV_AidingMode == AID_ABSOLUTE)) {
|
||||
} else if (gps.num_sats() == 5 && (PV_AidingMode == AID_ABSOLUTE)) {
|
||||
gpsNoiseScaler = 1.4f;
|
||||
} else { // <= 4 satellites or in constant position mode
|
||||
gpsNoiseScaler = 2.0f;
|
||||
}
|
||||
|
||||
// Check if GPS can output vertical velocity, if it is allowed to be used, and set GPS fusion mode accordingly
|
||||
if (_ahrs->get_gps().have_vertical_velocity() && frontend->_fusionModeGPS == 0 && !frontend->inhibitGpsVertVelUse) {
|
||||
if (gps.have_vertical_velocity() && frontend->_fusionModeGPS == 0 && !frontend->inhibitGpsVertVelUse) {
|
||||
useGpsVertVel = true;
|
||||
} else {
|
||||
useGpsVertVel = false;
|
||||
@ -494,7 +495,7 @@ void NavEKF2_core::readGpsData()
|
||||
calcGpsGoodForFlight();
|
||||
|
||||
// Read the GPS locaton in WGS-84 lat,long,height coordinates
|
||||
const struct Location &gpsloc = _ahrs->get_gps().location();
|
||||
const struct Location &gpsloc = gps.location();
|
||||
|
||||
// Set the EKF origin and magnetic field declination if not previously set and GPS checks have passed
|
||||
if (gpsGoodToAlign && !validOrigin) {
|
||||
|
@ -251,9 +251,9 @@ bool NavEKF2_core::getPosNE(Vector2f &posNE) const
|
||||
} else {
|
||||
// In constant position mode the EKF position states are at the origin, so we cannot use them as a position estimate
|
||||
if(validOrigin) {
|
||||
if ((_ahrs->get_gps().status() >= AP_GPS::GPS_OK_FIX_2D)) {
|
||||
if ((AP::gps().status() >= AP_GPS::GPS_OK_FIX_2D)) {
|
||||
// If the origin has been set and we have GPS, then return the GPS position relative to the origin
|
||||
const struct Location &gpsloc = _ahrs->get_gps().location();
|
||||
const struct Location &gpsloc = AP::gps().location();
|
||||
Vector2f tempPosNE = location_diff(EKF_origin, gpsloc);
|
||||
posNE.x = tempPosNE.x;
|
||||
posNE.y = tempPosNE.y;
|
||||
@ -315,6 +315,8 @@ bool NavEKF2_core::getHAGL(float &HAGL) const
|
||||
// The getFilterStatus() function provides a more detailed description of data health and must be checked if data is to be used for flight control
|
||||
bool NavEKF2_core::getLLH(struct Location &loc) const
|
||||
{
|
||||
const AP_GPS &gps = AP::gps();
|
||||
|
||||
if(validOrigin) {
|
||||
// Altitude returned is an absolute altitude relative to the WGS-84 spherioid
|
||||
loc.alt = 100 * (int32_t)(ekfGpsRefHgt - (double)outputDataNew.position.z);
|
||||
@ -331,9 +333,9 @@ bool NavEKF2_core::getLLH(struct Location &loc) const
|
||||
} else {
|
||||
// we could be in constant position mode because the vehicle has taken off without GPS, or has lost GPS
|
||||
// in this mode we cannot use the EKF states to estimate position so will return the best available data
|
||||
if ((_ahrs->get_gps().status() >= AP_GPS::GPS_OK_FIX_2D)) {
|
||||
if ((gps.status() >= AP_GPS::GPS_OK_FIX_2D)) {
|
||||
// we have a GPS position fix to return
|
||||
const struct Location &gpsloc = _ahrs->get_gps().location();
|
||||
const struct Location &gpsloc = gps.location();
|
||||
loc.lat = gpsloc.lat;
|
||||
loc.lng = gpsloc.lng;
|
||||
return true;
|
||||
@ -347,8 +349,8 @@ bool NavEKF2_core::getLLH(struct Location &loc) const
|
||||
} else {
|
||||
// If no origin has been defined for the EKF, then we cannot use its position states so return a raw
|
||||
// GPS reading if available and return false
|
||||
if ((_ahrs->get_gps().status() >= AP_GPS::GPS_OK_FIX_3D)) {
|
||||
const struct Location &gpsloc = _ahrs->get_gps().location();
|
||||
if ((gps.status() >= AP_GPS::GPS_OK_FIX_3D)) {
|
||||
const struct Location &gpsloc = gps.location();
|
||||
loc = gpsloc;
|
||||
loc.flags.relative_alt = 0;
|
||||
loc.flags.terrain_alt = 0;
|
||||
|
@ -238,7 +238,7 @@ void NavEKF2_core::SelectVelPosFusion()
|
||||
// Determine if we need to fuse position and velocity data on this time step
|
||||
if (gpsDataToFuse && PV_AidingMode == AID_ABSOLUTE) {
|
||||
// correct GPS data for position offset of antenna phase centre relative to the IMU
|
||||
Vector3f posOffsetBody = _ahrs->get_gps().get_antenna_offset(gpsDataDelayed.sensor_idx) - accelPosOffset;
|
||||
Vector3f posOffsetBody = AP::gps().get_antenna_offset(gpsDataDelayed.sensor_idx) - accelPosOffset;
|
||||
if (!posOffsetBody.is_zero()) {
|
||||
if (fuseVelData) {
|
||||
// TODO use a filtered angular rate with a group delay that matches the GPS delay
|
||||
|
@ -22,6 +22,8 @@ extern const AP_HAL::HAL& hal;
|
||||
*/
|
||||
bool NavEKF2_core::calcGpsGoodToAlign(void)
|
||||
{
|
||||
const AP_GPS &gps = AP::gps();
|
||||
|
||||
if (inFlight && assume_zero_sideslip() && !use_compass()) {
|
||||
// this is a special case where a plane has launched without magnetometer
|
||||
// is now in the air and needs to align yaw to the GPS and start navigating as soon as possible
|
||||
@ -45,7 +47,7 @@ bool NavEKF2_core::calcGpsGoodToAlign(void)
|
||||
|
||||
// Check for significant change in GPS position if disarmed which indicates bad GPS
|
||||
// This check can only be used when the vehicle is stationary
|
||||
const struct Location &gpsloc = _ahrs->get_gps().location(); // Current location
|
||||
const struct Location &gpsloc = gps.location(); // Current location
|
||||
const float posFiltTimeConst = 10.0f; // time constant used to decay position drift
|
||||
// calculate time lapsesd since last update and limit to prevent numerical errors
|
||||
float deltaTime = constrain_float(float(imuDataDelayed.time_ms - lastPreAlignGpsCheckTime_ms)*0.001f,0.01f,posFiltTimeConst);
|
||||
@ -73,18 +75,18 @@ bool NavEKF2_core::calcGpsGoodToAlign(void)
|
||||
|
||||
// Check that the vertical GPS vertical velocity is reasonable after noise filtering
|
||||
bool gpsVertVelFail;
|
||||
if (_ahrs->get_gps().have_vertical_velocity() && onGround) {
|
||||
if (gps.have_vertical_velocity() && onGround) {
|
||||
// check that the average vertical GPS velocity is close to zero
|
||||
gpsVertVelFilt = 0.1f * gpsDataNew.vel.z + 0.9f * gpsVertVelFilt;
|
||||
gpsVertVelFilt = constrain_float(gpsVertVelFilt,-10.0f,10.0f);
|
||||
gpsVertVelFail = (fabsf(gpsVertVelFilt) > 0.3f*checkScaler) && (frontend->_gpsCheck & MASK_GPS_VERT_SPD);
|
||||
} else if ((frontend->_fusionModeGPS == 0) && !_ahrs->get_gps().have_vertical_velocity()) {
|
||||
} else if ((frontend->_fusionModeGPS == 0) && !gps.have_vertical_velocity()) {
|
||||
// If the EKF settings require vertical GPS velocity and the receiver is not outputting it, then fail
|
||||
gpsVertVelFail = true;
|
||||
// if we have a 3D fix with no vertical velocity and
|
||||
// EK2_GPS_TYPE=0 then change it to 1. It means the GPS is not
|
||||
// capable of giving a vertical velocity
|
||||
if (_ahrs->get_gps().status() >= AP_GPS::GPS_OK_FIX_3D) {
|
||||
if (gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
|
||||
frontend->_fusionModeGPS.set(1);
|
||||
gcs().send_text(MAV_SEVERITY_WARNING, "EK2: Changed EK2_GPS_TYPE to 1");
|
||||
}
|
||||
@ -126,7 +128,7 @@ bool NavEKF2_core::calcGpsGoodToAlign(void)
|
||||
// fail if horiziontal position accuracy not sufficient
|
||||
float hAcc = 0.0f;
|
||||
bool hAccFail;
|
||||
if (_ahrs->get_gps().horizontal_accuracy(hAcc)) {
|
||||
if (gps.horizontal_accuracy(hAcc)) {
|
||||
hAccFail = (hAcc > 5.0f*checkScaler) && (frontend->_gpsCheck & MASK_GPS_POS_ERR);
|
||||
} else {
|
||||
hAccFail = false;
|
||||
@ -145,7 +147,7 @@ bool NavEKF2_core::calcGpsGoodToAlign(void)
|
||||
// Check for vertical GPS accuracy
|
||||
float vAcc = 0.0f;
|
||||
bool vAccFail = false;
|
||||
if (_ahrs->get_gps().vertical_accuracy(vAcc)) {
|
||||
if (gps.vertical_accuracy(vAcc)) {
|
||||
vAccFail = (vAcc > 7.5f * checkScaler) && (frontend->_gpsCheck & MASK_GPS_POS_ERR);
|
||||
}
|
||||
// Report check result as a text string and bitmask
|
||||
@ -172,24 +174,24 @@ bool NavEKF2_core::calcGpsGoodToAlign(void)
|
||||
}
|
||||
|
||||
// fail if satellite geometry is poor
|
||||
bool hdopFail = (_ahrs->get_gps().get_hdop() > 250) && (frontend->_gpsCheck & MASK_GPS_HDOP);
|
||||
bool hdopFail = (gps.get_hdop() > 250) && (frontend->_gpsCheck & MASK_GPS_HDOP);
|
||||
|
||||
// Report check result as a text string and bitmask
|
||||
if (hdopFail) {
|
||||
hal.util->snprintf(prearm_fail_string, sizeof(prearm_fail_string),
|
||||
"GPS HDOP %.1f (needs 2.5)", (double)(0.01f * _ahrs->get_gps().get_hdop()));
|
||||
"GPS HDOP %.1f (needs 2.5)", (double)(0.01f * gps.get_hdop()));
|
||||
gpsCheckStatus.bad_hdop = true;
|
||||
} else {
|
||||
gpsCheckStatus.bad_hdop = false;
|
||||
}
|
||||
|
||||
// fail if not enough sats
|
||||
bool numSatsFail = (_ahrs->get_gps().num_sats() < 6) && (frontend->_gpsCheck & MASK_GPS_NSATS);
|
||||
bool numSatsFail = (gps.num_sats() < 6) && (frontend->_gpsCheck & MASK_GPS_NSATS);
|
||||
|
||||
// Report check result as a text string and bitmask
|
||||
if (numSatsFail) {
|
||||
hal.util->snprintf(prearm_fail_string, sizeof(prearm_fail_string),
|
||||
"GPS numsats %u (needs 6)", _ahrs->get_gps().num_sats());
|
||||
"GPS numsats %u (needs 6)", gps.num_sats());
|
||||
gpsCheckStatus.bad_sats = true;
|
||||
} else {
|
||||
gpsCheckStatus.bad_sats = false;
|
||||
@ -251,7 +253,7 @@ void NavEKF2_core::calcGpsGoodForFlight(void)
|
||||
|
||||
// get the receivers reported speed accuracy
|
||||
float gpsSpdAccRaw;
|
||||
if (!_ahrs->get_gps().speed_accuracy(gpsSpdAccRaw)) {
|
||||
if (!AP::gps().speed_accuracy(gpsSpdAccRaw)) {
|
||||
gpsSpdAccRaw = 0.0f;
|
||||
}
|
||||
|
||||
|
@ -333,7 +333,7 @@ void NavEKF2_core::InitialiseVariables()
|
||||
bool NavEKF2_core::InitialiseFilterBootstrap(void)
|
||||
{
|
||||
// If we are a plane and don't have GPS lock then don't initialise
|
||||
if (assume_zero_sideslip() && _ahrs->get_gps().status() < AP_GPS::GPS_OK_FIX_3D) {
|
||||
if (assume_zero_sideslip() && AP::gps().status() < AP_GPS::GPS_OK_FIX_3D) {
|
||||
hal.util->snprintf(prearm_fail_string,
|
||||
sizeof(prearm_fail_string),
|
||||
"EKF2 init failure: No GPS lock");
|
||||
|
Loading…
Reference in New Issue
Block a user