AP_NavEKF: Add yaw estimator class using Gaussian Sum Filter
AP_NavEKF: Simplify centripetal accel correction
This commit is contained in:
parent
c1d5f0441c
commit
6bb7c55bba
@ -77,3 +77,5 @@ struct ekf_timing {
|
||||
float delVelDT_min;
|
||||
};
|
||||
void Log_EKF_Timing(const char *name, const uint8_t core, uint64_t time_us, const struct ekf_timing &timing);
|
||||
|
||||
#define N_MODELS_EKFGSF 5U
|
||||
|
658
libraries/AP_NavEKF/EKFGSF_yaw.cpp
Normal file
658
libraries/AP_NavEKF/EKFGSF_yaw.cpp
Normal file
@ -0,0 +1,658 @@
|
||||
/*
|
||||
Definition of functions used to provide a backup estimate of yaw angle
|
||||
that doesn't use a magnetometer. Uses a bank of 3-state EKF's organised
|
||||
as a Guassian sum filter where states are velocity N,E (m/s) and yaw angle (rad)
|
||||
|
||||
Written by Paul Riseborough <p_riseborough@live.com.au>
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <AP_HAL/AP_HAL.h>
|
||||
|
||||
#include "AP_NavEKF/EKFGSF_yaw.h"
|
||||
#include <AP_AHRS/AP_AHRS.h>
|
||||
#include <AP_Vehicle/AP_Vehicle.h>
|
||||
#include <GCS_MAVLink/GCS.h>
|
||||
|
||||
EKFGSF_yaw::EKFGSF_yaw() {};
|
||||
|
||||
void EKFGSF_yaw::update(const Vector3f &delAng,
|
||||
const Vector3f &delVel,
|
||||
const float delAngDT,
|
||||
const float delVelDT,
|
||||
bool runEKF,
|
||||
float TAS)
|
||||
{
|
||||
|
||||
// copy to class variables
|
||||
delta_angle = delAng;
|
||||
delta_velocity = delVel;
|
||||
angle_dt = delAngDT;
|
||||
velocity_dt = delVelDT;
|
||||
run_ekf_gsf = runEKF;
|
||||
true_airspeed = TAS;
|
||||
|
||||
// Calculate a low pass filtered acceleration vector that will be used to keep the AHRS tilt aligned
|
||||
// The time constant of the filter is a fixed ratio relative to the time constant of the AHRS tilt correction loop
|
||||
const float filter_coef = fminf(EKFGSF_accelFiltRatio * delVelDT * EKFGSF_tiltGain, 1.0f);
|
||||
const Vector3f accel = delVel / fmaxf(delVelDT, 0.001f);
|
||||
ahrs_accel = ahrs_accel * (1.0f - filter_coef) + accel * filter_coef;
|
||||
|
||||
// Iniitialise states and only when acceleration is close to 1g to prevent vehicle movement casuing a large initial tilt error
|
||||
if (!ahrs_tilt_aligned) {
|
||||
const float accel_norm_sq = accel.length_squared();
|
||||
const float upper_accel_limit = GRAVITY_MSS * 1.1f;
|
||||
const float lower_accel_limit = GRAVITY_MSS * 0.9f;
|
||||
const bool ok_to_align = ((accel_norm_sq > lower_accel_limit * lower_accel_limit &&
|
||||
accel_norm_sq < upper_accel_limit * upper_accel_limit));
|
||||
if (ok_to_align) {
|
||||
initialise();
|
||||
alignTilt();
|
||||
ahrs_tilt_aligned = true;
|
||||
ahrs_accel = accel;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// Calculate common variables used by the AHRS prediction models
|
||||
ahrs_accel_norm = ahrs_accel.length();
|
||||
|
||||
// Calculate AHRS acceleration fusion gain using a quadratic weighting function that is unity at 1g
|
||||
// and zero at the min and max g limits. This reduces the effect of large g transients on the attitude
|
||||
// esitmates.
|
||||
float EKFGSF_ahrs_ng = ahrs_accel_norm / GRAVITY_MSS;
|
||||
if (EKFGSF_ahrs_ng > 1.0f) {
|
||||
if (is_positive(true_airspeed)) {
|
||||
// When flying in fixed wing mode we need to allow for more positive g due to coordinated turns
|
||||
// Gain varies from unity at 1g to zero at 2g
|
||||
accel_gain = EKFGSF_tiltGain * sq(2.0f - EKFGSF_ahrs_ng);
|
||||
} else if (accel_gain <= 1.5f) {
|
||||
// Gain varies from unity at 1g to zero at 1.5g
|
||||
accel_gain = EKFGSF_tiltGain * sq(3.0f - 2.0f * EKFGSF_ahrs_ng);
|
||||
} else {
|
||||
// Gain is zero above max g
|
||||
accel_gain = 0.0f;
|
||||
}
|
||||
} else if (accel_gain > 0.5f) {
|
||||
// Gain varies from zero at 0.5g to unity at 1g
|
||||
accel_gain = EKFGSF_tiltGain * sq(2.0f * EKFGSF_ahrs_ng - 1.0f);
|
||||
} else {
|
||||
// Gain is zero below min g
|
||||
accel_gain = 0.0f;
|
||||
}
|
||||
|
||||
// Always run the AHRS prediction cycle for each model
|
||||
for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx ++) {
|
||||
predict(mdl_idx);
|
||||
}
|
||||
|
||||
// The 3-state EKF models only run when flying to avoid corrupted estimates due to operator handling and GPS interference
|
||||
if (vel_data_updated && run_ekf_gsf) {
|
||||
if (!vel_fuse_running) {
|
||||
// Perform in-flight alignment
|
||||
for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx ++) {
|
||||
// Use the firstGPS measurement to set the velocities and corresponding variances
|
||||
EKF[mdl_idx].X[0] = vel_NE[0];
|
||||
EKF[mdl_idx].X[1] = vel_NE[1];
|
||||
EKF[mdl_idx].P[0][0] = sq(fmaxf(vel_accuracy, 0.5f));
|
||||
EKF[mdl_idx].P[1][1] = EKF[mdl_idx].P[0][0];
|
||||
}
|
||||
alignYaw();
|
||||
vel_fuse_running = true;
|
||||
} else {
|
||||
float total_w = 0.0f;
|
||||
float newWeight[(uint8_t)N_MODELS_EKFGSF];
|
||||
bool state_update_failed = false;
|
||||
for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx ++) {
|
||||
// Update states and covariances using GPS NE velocity measurements fused as direct state observations
|
||||
if (!correct(mdl_idx)) {
|
||||
state_update_failed = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (!state_update_failed) {
|
||||
// Calculate weighting for each model assuming a normal error distribution
|
||||
for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx ++) {
|
||||
newWeight[mdl_idx]= fmaxf(gaussianDensity(mdl_idx) * GSF.weights[mdl_idx], 0.0f);
|
||||
total_w += newWeight[mdl_idx];
|
||||
}
|
||||
|
||||
// Normalise the sum of weights to unity
|
||||
if (vel_fuse_running && is_positive(total_w)) {
|
||||
float total_w_inv = 1.0f / total_w;
|
||||
for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx ++) {
|
||||
GSF.weights[mdl_idx] = newWeight[mdl_idx] * total_w_inv;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (vel_fuse_running && !run_ekf_gsf) {
|
||||
// We have landed so reset EKF-GSF states and wait to fly again
|
||||
// Do not reset the AHRS as it continues to run when on ground
|
||||
initialise();
|
||||
vel_fuse_running = false;
|
||||
}
|
||||
|
||||
// Calculate a composite yaw as a weighted average of the states for each model.
|
||||
// To avoid issues with angle wrapping, the yaw state is converted to a vector with legnth
|
||||
// equal to the weighting value before it is summed.
|
||||
Vector2f yaw_vector = {};
|
||||
for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx ++) {
|
||||
yaw_vector[0] += GSF.weights[mdl_idx] * cosf(EKF[mdl_idx].X[2]);
|
||||
yaw_vector[1] += GSF.weights[mdl_idx] * sinf(EKF[mdl_idx].X[2]);
|
||||
}
|
||||
GSF.yaw = atan2f(yaw_vector[1],yaw_vector[0]);
|
||||
|
||||
// Example for future reference showing how a full GSF covariance matrix could be calculated if required
|
||||
/*
|
||||
memset(&GSF.P, 0, sizeof(GSF.P));
|
||||
for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx ++) {
|
||||
float delta[3];
|
||||
for (uint8_t row = 0; row < 3; row++) {
|
||||
delta[row] = EKF[mdl_idx].X[row] - GSF.X[row];
|
||||
}
|
||||
for (uint8_t row = 0; row < 3; row++) {
|
||||
for (uint8_t col = 0; col < 3; col++) {
|
||||
GSF.P[row][col] += GSF.weights[mdl_idx] * (EKF[mdl_idx].P[row][col] + delta[row] * delta[col]);
|
||||
}
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
GSF.yaw_variance = 0.0f;
|
||||
for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx ++) {
|
||||
float yawDelta = wrap_PI(EKF[mdl_idx].X[2] - GSF.yaw);
|
||||
GSF.yaw_variance += GSF.weights[mdl_idx] * (EKF[mdl_idx].P[2][2] + sq(yawDelta));
|
||||
}
|
||||
|
||||
// prevent the same velocity data being used again
|
||||
vel_data_updated = false;
|
||||
}
|
||||
|
||||
void EKFGSF_yaw::pushVelData(Vector2f vel, float velAcc)
|
||||
{
|
||||
vel_NE = vel;
|
||||
vel_accuracy = velAcc;
|
||||
vel_data_updated = true;
|
||||
}
|
||||
|
||||
void EKFGSF_yaw::predictAHRS(const uint8_t mdl_idx)
|
||||
{
|
||||
// Generate attitude solution using simple complementary filter for the selected model
|
||||
|
||||
// Calculate 'k' unit vector of earth frame rotated into body frame
|
||||
const Vector3f k(AHRS[mdl_idx].R[2][0], AHRS[mdl_idx].R[2][1], AHRS[mdl_idx].R[2][2]);
|
||||
|
||||
// Calculate angular rate vector in rad/sec averaged across last sample interval
|
||||
Vector3f ang_rate_delayed_raw = delta_angle / angle_dt;
|
||||
|
||||
// Perform angular rate correction using accel data and reduce correction as accel magnitude moves away from 1 g (reduces drift when vehicle picked up and moved).
|
||||
// During fixed wing flight, compensate for centripetal acceleration assuming coordinated turns and X axis forward
|
||||
|
||||
Vector3f tilt_error_gyro_correction = {}; // (rad/sec)
|
||||
|
||||
if (accel_gain > 0.0f) {
|
||||
|
||||
Vector3f accel = ahrs_accel;
|
||||
|
||||
if (is_positive(true_airspeed)) {
|
||||
// Calculate centripetal acceleration in body frame from cross product of body rate and body frame airspeed vector
|
||||
// NOTE: this assumes X axis is aligned with airspeed vector
|
||||
Vector3f centripetal_accel_vec_bf = Vector3f(0.0f, ang_rate_delayed_raw[2] * true_airspeed, - ang_rate_delayed_raw[1] * true_airspeed);
|
||||
|
||||
// Correct measured accel for centripetal acceleration
|
||||
accel -= centripetal_accel_vec_bf;
|
||||
}
|
||||
|
||||
tilt_error_gyro_correction = (k % accel) * (accel_gain / ahrs_accel_norm);
|
||||
|
||||
}
|
||||
|
||||
// Gyro bias estimation
|
||||
const float gyro_bias_limit = radians(5.0f);
|
||||
const float spinRate = ang_rate_delayed_raw.length();
|
||||
if (spinRate < 0.175f) {
|
||||
AHRS[mdl_idx].gyro_bias -= tilt_error_gyro_correction * (EKFGSF_gyroBiasGain * angle_dt);
|
||||
|
||||
for (int i = 0; i < 3; i++) {
|
||||
AHRS[mdl_idx].gyro_bias[i] = constrain_float(AHRS[mdl_idx].gyro_bias[i], -gyro_bias_limit, gyro_bias_limit);
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate the corrected body frame rotation vector for the last sample interval and apply to the rotation matrix
|
||||
const Vector3f ahrs_delta_angle = delta_angle + (tilt_error_gyro_correction - AHRS[mdl_idx].gyro_bias) * angle_dt;
|
||||
AHRS[mdl_idx].R = updateRotMat(AHRS[mdl_idx].R, ahrs_delta_angle);
|
||||
|
||||
}
|
||||
|
||||
void EKFGSF_yaw::alignTilt()
|
||||
{
|
||||
// Rotation matrix is constructed directly from acceleration measurement and will be the same for
|
||||
// all models so only need to calculate it once. Assumptions are:
|
||||
// 1) Yaw angle is zero - yaw is aligned later for each model when velocity fusion commences.
|
||||
// 2) The vehicle is not accelerating so all of the measured acceleration is due to gravity.
|
||||
|
||||
// Calculate earth frame Down axis unit vector rotated into body frame
|
||||
Vector3f down_in_bf = -delta_velocity;
|
||||
down_in_bf.normalize();
|
||||
|
||||
// Calculate earth frame North axis unit vector rotated into body frame, orthogonal to 'down_in_bf'
|
||||
// * operator is overloaded to provide a dot product
|
||||
const Vector3f i_vec_bf(1.0f,0.0f,0.0f);
|
||||
Vector3f north_in_bf = i_vec_bf - down_in_bf * (i_vec_bf * down_in_bf);
|
||||
north_in_bf.normalize();
|
||||
|
||||
// Calculate earth frame East axis unit vector rotated into body frame, orthogonal to 'down_in_bf' and 'north_in_bf'
|
||||
// % operator is overloaded to provide a cross product
|
||||
const Vector3f east_in_bf = down_in_bf % north_in_bf;
|
||||
|
||||
// Each column in a rotation matrix from earth frame to body frame represents the projection of the
|
||||
// corresponding earth frame unit vector rotated into the body frame, eg 'north_in_bf' would be the first column.
|
||||
// We need the rotation matrix from body frame to earth frame so the earth frame unit vectors rotated into body
|
||||
// frame are copied into corresponding rows instead to create the transpose.
|
||||
Matrix3f R;
|
||||
for (uint8_t col=0; col<3; col++) {
|
||||
R[0][col] = north_in_bf[col];
|
||||
R[1][col] = east_in_bf[col];
|
||||
R[2][col] = down_in_bf[col];
|
||||
}
|
||||
|
||||
// record alignment
|
||||
for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx++) {
|
||||
AHRS[mdl_idx].R = R;
|
||||
AHRS[mdl_idx].aligned = true;
|
||||
}
|
||||
}
|
||||
|
||||
void EKFGSF_yaw::alignYaw()
|
||||
{
|
||||
// Align yaw angle for each model
|
||||
for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx++) {
|
||||
if (fabsf(AHRS[mdl_idx].R[2][0]) < fabsf(AHRS[mdl_idx].R[2][1])) {
|
||||
// get the roll, pitch, yaw estimates from the rotation matrix using a 321 Tait-Bryan rotation sequence
|
||||
float roll,pitch,yaw;
|
||||
AHRS[mdl_idx].R.to_euler(&roll, &pitch, &yaw);
|
||||
|
||||
// set the yaw angle
|
||||
yaw = wrap_PI(EKF[mdl_idx].X[2]);
|
||||
|
||||
// update the body to earth frame rotation matrix
|
||||
AHRS[mdl_idx].R.from_euler(roll, pitch, yaw);
|
||||
|
||||
} else {
|
||||
// Calculate the 312 Tait-Bryan rotation sequence that rotates from earth to body frame
|
||||
Vector3f euler312 = AHRS[mdl_idx].R.to_euler312();
|
||||
euler312[2] = wrap_PI(EKF[mdl_idx].X[2]); // first rotation (yaw) taken from EKF model state
|
||||
|
||||
// update the body to earth frame rotation matrix
|
||||
AHRS[mdl_idx].R.from_euler312(euler312[0], euler312[1], euler312[2]);
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// predict states and covariance for specified model index
|
||||
void EKFGSF_yaw::predict(const uint8_t mdl_idx)
|
||||
{
|
||||
// generate an attitude reference using IMU data
|
||||
predictAHRS(mdl_idx);
|
||||
|
||||
// we don't start running the EKF part of the algorithm until there are regular velocity observations
|
||||
if (!vel_fuse_running) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Calculate the yaw state using a projection onto the horizontal that avoids gimbal lock
|
||||
if (fabsf(AHRS[mdl_idx].R[2][0]) < fabsf(AHRS[mdl_idx].R[2][1])) {
|
||||
// use 321 Tait-Bryan rotation to define yaw state
|
||||
EKF[mdl_idx].X[2] = atan2f(AHRS[mdl_idx].R[1][0], AHRS[mdl_idx].R[0][0]);
|
||||
} else {
|
||||
// use 312 Tait-Bryan rotation to define yaw state
|
||||
EKF[mdl_idx].X[2] = atan2f(-AHRS[mdl_idx].R[0][1], AHRS[mdl_idx].R[1][1]); // first rotation (yaw)
|
||||
}
|
||||
|
||||
// calculate delta velocity in a horizontal front-right frame
|
||||
const Vector3f del_vel_NED = AHRS[mdl_idx].R * delta_velocity;
|
||||
const float dvx = del_vel_NED[0] * cosf(EKF[mdl_idx].X[2]) + del_vel_NED[1] * sinf(EKF[mdl_idx].X[2]);
|
||||
const float dvy = - del_vel_NED[0] * sinf(EKF[mdl_idx].X[2]) + del_vel_NED[1] * cosf(EKF[mdl_idx].X[2]);
|
||||
|
||||
// sum delta velocities in earth frame:
|
||||
EKF[mdl_idx].X[0] += del_vel_NED[0];
|
||||
EKF[mdl_idx].X[1] += del_vel_NED[1];
|
||||
|
||||
// predict covariance - autocode from https://github.com/priseborough/3_state_filter/blob/flightLogReplay-wip/calcPupdate.txt
|
||||
|
||||
// Local short variable name copies required for readability
|
||||
// Compiler might be smart enough to optimise these out
|
||||
const float P00 = EKF[mdl_idx].P[0][0];
|
||||
const float P01 = EKF[mdl_idx].P[0][1];
|
||||
const float P02 = EKF[mdl_idx].P[0][2];
|
||||
const float P10 = EKF[mdl_idx].P[1][0];
|
||||
const float P11 = EKF[mdl_idx].P[1][1];
|
||||
const float P12 = EKF[mdl_idx].P[1][2];
|
||||
const float P20 = EKF[mdl_idx].P[2][0];
|
||||
const float P21 = EKF[mdl_idx].P[2][1];
|
||||
const float P22 = EKF[mdl_idx].P[2][2];
|
||||
|
||||
// Use fixed values for delta velocity and delta angle process noise variances
|
||||
const float dvxVar = sq(EKFGSF_accelNoise * velocity_dt); // variance of forward delta velocity - (m/s)^2
|
||||
const float dvyVar = dvxVar; // variance of right delta velocity - (m/s)^2
|
||||
const float dazVar = sq(EKFGSF_gyroNoise * angle_dt); // variance of yaw delta angle - rad^2
|
||||
|
||||
const float t2 = sinf(EKF[mdl_idx].X[2]);
|
||||
const float t3 = cosf(EKF[mdl_idx].X[2]);
|
||||
const float t4 = dvy*t3;
|
||||
const float t5 = dvx*t2;
|
||||
const float t6 = t4+t5;
|
||||
const float t8 = P22*t6;
|
||||
const float t7 = P02-t8;
|
||||
const float t9 = dvx*t3;
|
||||
const float t11 = dvy*t2;
|
||||
const float t10 = t9-t11;
|
||||
const float t12 = dvxVar*t2*t3;
|
||||
const float t13 = t2*t2;
|
||||
const float t14 = t3*t3;
|
||||
const float t15 = P22*t10;
|
||||
const float t16 = P12+t15;
|
||||
|
||||
const float min_var = 1e-6f;
|
||||
EKF[mdl_idx].P[0][0] = fmaxf(P00-P20*t6+dvxVar*t14+dvyVar*t13-t6*t7, min_var);
|
||||
EKF[mdl_idx].P[0][1] = P01+t12-P21*t6+t7*t10-dvyVar*t2*t3;
|
||||
EKF[mdl_idx].P[0][2] = t7;
|
||||
EKF[mdl_idx].P[1][0] = P10+t12+P20*t10-t6*t16-dvyVar*t2*t3;
|
||||
EKF[mdl_idx].P[1][1] = fmaxf(P11+P21*t10+dvxVar*t13+dvyVar*t14+t10*t16, min_var);
|
||||
EKF[mdl_idx].P[1][2] = t16;
|
||||
EKF[mdl_idx].P[2][0] = P20-t8;
|
||||
EKF[mdl_idx].P[2][1] = P21+t15;
|
||||
EKF[mdl_idx].P[2][2] = fmaxf(P22+dazVar, min_var);
|
||||
|
||||
// force symmetry
|
||||
forceSymmetry(mdl_idx);
|
||||
}
|
||||
|
||||
// Update EKF states and covariance for specified model index using velocity measurement
|
||||
// Returns false if the sttae and covariance correction failed
|
||||
bool EKFGSF_yaw::correct(const uint8_t mdl_idx)
|
||||
{
|
||||
// set observation variance from accuracy estimate supplied by GPS and apply a sanity check minimum
|
||||
const float velObsVar = sq(fmaxf(vel_accuracy, 0.5f));
|
||||
|
||||
// calculate velocity observation innovations
|
||||
EKF[mdl_idx].innov[0] = EKF[mdl_idx].X[0] - vel_NE[0];
|
||||
EKF[mdl_idx].innov[1] = EKF[mdl_idx].X[1] - vel_NE[1];
|
||||
|
||||
// copy covariance matrix to temporary variables
|
||||
const float P00 = EKF[mdl_idx].P[0][0];
|
||||
const float P01 = EKF[mdl_idx].P[0][1];
|
||||
const float P02 = EKF[mdl_idx].P[0][2];
|
||||
const float P10 = EKF[mdl_idx].P[1][0];
|
||||
const float P11 = EKF[mdl_idx].P[1][1];
|
||||
const float P12 = EKF[mdl_idx].P[1][2];
|
||||
const float P20 = EKF[mdl_idx].P[2][0];
|
||||
const float P21 = EKF[mdl_idx].P[2][1];
|
||||
const float P22 = EKF[mdl_idx].P[2][2];
|
||||
|
||||
// calculate innovation variance
|
||||
EKF[mdl_idx].S[0][0] = P00 + velObsVar;
|
||||
EKF[mdl_idx].S[1][1] = P11 + velObsVar;
|
||||
EKF[mdl_idx].S[0][1] = P01;
|
||||
EKF[mdl_idx].S[1][0] = P10;
|
||||
|
||||
// Perform a chi-square innovation consistency test and calculate a compression scale factor that limits the magnitude of innovations to 5-sigma
|
||||
float S_det_inv = (EKF[mdl_idx].S[0][0]*EKF[mdl_idx].S[1][1] - EKF[mdl_idx].S[0][1]*EKF[mdl_idx].S[1][0]);
|
||||
float innov_comp_scale_factor = 1.0f;
|
||||
if (fabsf(S_det_inv) > 1E-6f) {
|
||||
// Calculate elements for innovation covariance inverse matrix assuming symmetry
|
||||
S_det_inv = 1.0f / S_det_inv;
|
||||
const float S_inv_NN = EKF[mdl_idx].S[1][1] * S_det_inv;
|
||||
const float S_inv_EE = EKF[mdl_idx].S[0][0] * S_det_inv;
|
||||
const float S_inv_NE = EKF[mdl_idx].S[0][1] * S_det_inv;
|
||||
|
||||
// The following expression was derived symbolically from test ratio = transpose(innovation) * inverse(innovation variance) * innovation = [1x2] * [2,2] * [2,1] = [1,1]
|
||||
const float test_ratio = EKF[mdl_idx].innov[0]*(EKF[mdl_idx].innov[0]*S_inv_NN + EKF[mdl_idx].innov[1]*S_inv_NE) + EKF[mdl_idx].innov[1]*(EKF[mdl_idx].innov[0]*S_inv_NE + EKF[mdl_idx].innov[1]*S_inv_EE);
|
||||
|
||||
// If the test ratio is greater than 25 (5 Sigma) then reduce the length of the innovation vector to clip it at 5-Sigma
|
||||
// This protects from large measurement spikes
|
||||
if (test_ratio > 25.0f) {
|
||||
innov_comp_scale_factor = sqrtf(25.0f / test_ratio);
|
||||
}
|
||||
} else {
|
||||
// skip this fusion step because calculation is badly conditioned
|
||||
return false;
|
||||
}
|
||||
|
||||
// calculate Kalman gain K and covariance matrix P
|
||||
// autocode from https://github.com/priseborough/3_state_filter/blob/flightLogReplay-wip/calcK.txt
|
||||
// and https://github.com/priseborough/3_state_filter/blob/flightLogReplay-wip/calcPmat.txt
|
||||
const float t2 = P00*velObsVar;
|
||||
const float t3 = P11*velObsVar;
|
||||
const float t4 = velObsVar*velObsVar;
|
||||
const float t5 = P00*P11;
|
||||
const float t9 = P01*P10;
|
||||
const float t6 = t2+t3+t4+t5-t9;
|
||||
float t7;
|
||||
if (fabsf(t6) > 1e-6f) {
|
||||
t7 = 1.0f/t6;
|
||||
} else {
|
||||
// skip this fusion step
|
||||
return false;
|
||||
}
|
||||
const float t8 = P11+velObsVar;
|
||||
const float t10 = P00+velObsVar;
|
||||
float K[3][2];
|
||||
|
||||
K[0][0] = -P01*P10*t7+P00*t7*t8;
|
||||
K[0][1] = -P00*P01*t7+P01*t7*t10;
|
||||
K[1][0] = -P10*P11*t7+P10*t7*t8;
|
||||
K[1][1] = -P01*P10*t7+P11*t7*t10;
|
||||
K[2][0] = -P10*P21*t7+P20*t7*t8;
|
||||
K[2][1] = -P01*P20*t7+P21*t7*t10;
|
||||
|
||||
const float t11 = P00*P01*t7;
|
||||
const float t15 = P01*t7*t10;
|
||||
const float t12 = t11-t15;
|
||||
const float t13 = P01*P10*t7;
|
||||
const float t16 = P00*t7*t8;
|
||||
const float t14 = t13-t16;
|
||||
const float t17 = t8*t12;
|
||||
const float t18 = P01*t14;
|
||||
const float t19 = t17+t18;
|
||||
const float t20 = t10*t14;
|
||||
const float t21 = P10*t12;
|
||||
const float t22 = t20+t21;
|
||||
const float t27 = P11*t7*t10;
|
||||
const float t23 = t13-t27;
|
||||
const float t24 = P10*P11*t7;
|
||||
const float t26 = P10*t7*t8;
|
||||
const float t25 = t24-t26;
|
||||
const float t28 = t8*t23;
|
||||
const float t29 = P01*t25;
|
||||
const float t30 = t28+t29;
|
||||
const float t31 = t10*t25;
|
||||
const float t32 = P10*t23;
|
||||
const float t33 = t31+t32;
|
||||
const float t34 = P01*P20*t7;
|
||||
const float t38 = P21*t7*t10;
|
||||
const float t35 = t34-t38;
|
||||
const float t36 = P10*P21*t7;
|
||||
const float t39 = P20*t7*t8;
|
||||
const float t37 = t36-t39;
|
||||
const float t40 = t8*t35;
|
||||
const float t41 = P01*t37;
|
||||
const float t42 = t40+t41;
|
||||
const float t43 = t10*t37;
|
||||
const float t44 = P10*t35;
|
||||
const float t45 = t43+t44;
|
||||
|
||||
const float min_var = 1e-6f;
|
||||
EKF[mdl_idx].P[0][0] = fmaxf(P00-t12*t19-t14*t22, min_var);
|
||||
EKF[mdl_idx].P[0][1] = P01-t19*t23-t22*t25;
|
||||
EKF[mdl_idx].P[0][2] = P02-t19*t35-t22*t37;
|
||||
EKF[mdl_idx].P[1][0] = P10-t12*t30-t14*t33;
|
||||
EKF[mdl_idx].P[1][1] = fmaxf(P11-t23*t30-t25*t33, min_var);
|
||||
EKF[mdl_idx].P[1][2] = P12-t30*t35-t33*t37;
|
||||
EKF[mdl_idx].P[2][0] = P20-t12*t42-t14*t45;
|
||||
EKF[mdl_idx].P[2][1] = P21-t23*t42-t25*t45;
|
||||
EKF[mdl_idx].P[2][2] = fmaxf(P22-t35*t42-t37*t45, min_var);
|
||||
|
||||
// force symmetry
|
||||
forceSymmetry(mdl_idx);
|
||||
|
||||
// Apply state corrections and capture change in yaw angle
|
||||
const float yaw_prev = EKF[mdl_idx].X[2];
|
||||
for (uint8_t obs_index = 0; obs_index < 2; obs_index++) {
|
||||
// apply the state corrections including the compression scale factor
|
||||
for (unsigned row = 0; row < 3; row++) {
|
||||
EKF[mdl_idx].X[row] -= K[row][obs_index] * EKF[mdl_idx].innov[obs_index] * innov_comp_scale_factor;
|
||||
}
|
||||
}
|
||||
const float yaw_delta = EKF[mdl_idx].X[2] - yaw_prev;
|
||||
|
||||
// apply the change in yaw angle to the AHRS taking advantage of sparseness in the yaw rotation matrix
|
||||
const float cos_yaw = cosf(yaw_delta);
|
||||
const float sin_yaw = sinf(yaw_delta);
|
||||
float R_prev[2][3];
|
||||
memcpy(&R_prev, &AHRS[mdl_idx].R, sizeof(R_prev)); // copy first two rows from 3x3
|
||||
AHRS[mdl_idx].R[0][0] = R_prev[0][0] * cos_yaw - R_prev[1][0] * sin_yaw;
|
||||
AHRS[mdl_idx].R[0][1] = R_prev[0][1] * cos_yaw - R_prev[1][1] * sin_yaw;
|
||||
AHRS[mdl_idx].R[0][2] = R_prev[0][2] * cos_yaw - R_prev[1][2] * sin_yaw;
|
||||
AHRS[mdl_idx].R[1][0] = R_prev[0][0] * sin_yaw + R_prev[1][0] * cos_yaw;
|
||||
AHRS[mdl_idx].R[1][1] = R_prev[0][1] * sin_yaw + R_prev[1][1] * cos_yaw;
|
||||
AHRS[mdl_idx].R[1][2] = R_prev[0][2] * sin_yaw + R_prev[1][2] * cos_yaw;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void EKFGSF_yaw::initialise()
|
||||
{
|
||||
memset(&GSF, 0, sizeof(GSF));
|
||||
vel_fuse_running = false;
|
||||
vel_data_updated = false;
|
||||
run_ekf_gsf = false;
|
||||
|
||||
memset(&EKF, 0, sizeof(EKF));
|
||||
const float yaw_increment = M_2PI / (float)N_MODELS_EKFGSF;
|
||||
for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx++) {
|
||||
// evenly space initial yaw estimates in the region between +-Pi
|
||||
EKF[mdl_idx].X[2] = -M_PI + (0.5f * yaw_increment) + ((float)mdl_idx * yaw_increment);
|
||||
|
||||
// All filter models start with the same weight
|
||||
GSF.weights[mdl_idx] = 1.0f / (float)N_MODELS_EKFGSF;
|
||||
|
||||
// Take state and variance estimates direct from velocity sensor
|
||||
EKF[mdl_idx].X[0] = vel_NE[0];
|
||||
EKF[mdl_idx].X[1] = vel_NE[1];
|
||||
EKF[mdl_idx].P[0][0] = sq(fmaxf(vel_accuracy, 0.5f));
|
||||
EKF[mdl_idx].P[1][1] = EKF[mdl_idx].P[0][0];
|
||||
|
||||
// Use half yaw interval for yaw uncertainty as that is the maximum that the best model can be away from truth
|
||||
GSF.yaw_variance = sq(0.5f * yaw_increment);
|
||||
EKF[mdl_idx].P[2][2] = GSF.yaw_variance;
|
||||
}
|
||||
}
|
||||
|
||||
// returns the probability of a selected model output assuming a gaussian error distribution
|
||||
float EKFGSF_yaw::gaussianDensity(const uint8_t mdl_idx) const
|
||||
{
|
||||
const float t2 = EKF[mdl_idx].S[0][0] * EKF[mdl_idx].S[1][1];
|
||||
const float t5 = EKF[mdl_idx].S[0][1] * EKF[mdl_idx].S[1][0];
|
||||
const float t3 = t2 - t5; // determinant
|
||||
const float t4 = 1.0f / MAX(t3, 1e-12f); // determinant inverse
|
||||
|
||||
// inv(S)
|
||||
float invMat[2][2];
|
||||
invMat[0][0] = t4 * EKF[mdl_idx].S[1][1];
|
||||
invMat[1][1] = t4 * EKF[mdl_idx].S[0][0];
|
||||
invMat[0][1] = - t4 * EKF[mdl_idx].S[0][1];
|
||||
invMat[1][0] = - t4 * EKF[mdl_idx].S[1][0];
|
||||
|
||||
// inv(S) * innovation
|
||||
float tempVec[2];
|
||||
tempVec[0] = invMat[0][0] * EKF[mdl_idx].innov[0] + invMat[0][1] * EKF[mdl_idx].innov[1];
|
||||
tempVec[1] = invMat[1][0] * EKF[mdl_idx].innov[0] + invMat[1][1] * EKF[mdl_idx].innov[1];
|
||||
|
||||
// transpose(innovation) * inv(S) * innovation
|
||||
float normDist = tempVec[0] * EKF[mdl_idx].innov[0] + tempVec[1] * EKF[mdl_idx].innov[1];
|
||||
|
||||
// convert from a normalised variance to a probability assuming a Gaussian distribution
|
||||
normDist = expf(-0.5f * normDist);
|
||||
normDist *= sqrtf(t4)/ M_2PI;
|
||||
return normDist;
|
||||
}
|
||||
|
||||
bool EKFGSF_yaw::getLogData(float *yaw_composite, float *yaw_composite_variance, float yaw[N_MODELS_EKFGSF], float innov_VN[N_MODELS_EKFGSF], float innov_VE[N_MODELS_EKFGSF], float weight[N_MODELS_EKFGSF])
|
||||
{
|
||||
if (vel_fuse_running) {
|
||||
*yaw_composite = GSF.yaw;
|
||||
*yaw_composite_variance = GSF.yaw_variance;
|
||||
for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx++) {
|
||||
yaw[mdl_idx] = EKF[mdl_idx].X[2];
|
||||
innov_VN[mdl_idx] = EKF[mdl_idx].innov[0];
|
||||
innov_VE[mdl_idx] = EKF[mdl_idx].innov[1];
|
||||
weight[mdl_idx] = GSF.weights[mdl_idx];
|
||||
}
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void EKFGSF_yaw::forceSymmetry(const uint8_t mdl_idx)
|
||||
{
|
||||
float P01 = 0.5f * (EKF[mdl_idx].P[0][1] + EKF[mdl_idx].P[1][0]);
|
||||
float P02 = 0.5f * (EKF[mdl_idx].P[0][2] + EKF[mdl_idx].P[2][0]);
|
||||
float P12 = 0.5f * (EKF[mdl_idx].P[1][2] + EKF[mdl_idx].P[2][1]);
|
||||
EKF[mdl_idx].P[0][1] = EKF[mdl_idx].P[1][0] = P01;
|
||||
EKF[mdl_idx].P[0][2] = EKF[mdl_idx].P[2][0] = P02;
|
||||
EKF[mdl_idx].P[1][2] = EKF[mdl_idx].P[2][1] = P12;
|
||||
}
|
||||
|
||||
// Apply a body frame delta angle to the body to earth frame rotation matrix using a small angle approximation
|
||||
Matrix3f EKFGSF_yaw::updateRotMat(const Matrix3f &R, const Vector3f &g)
|
||||
{
|
||||
Matrix3f ret = R;
|
||||
ret[0][0] += R[0][1] * g[2] - R[0][2] * g[1];
|
||||
ret[0][1] += R[0][2] * g[0] - R[0][0] * g[2];
|
||||
ret[0][2] += R[0][0] * g[1] - R[0][1] * g[0];
|
||||
ret[1][0] += R[1][1] * g[2] - R[1][2] * g[1];
|
||||
ret[1][1] += R[1][2] * g[0] - R[1][0] * g[2];
|
||||
ret[1][2] += R[1][0] * g[1] - R[1][1] * g[0];
|
||||
ret[2][0] += R[2][1] * g[2] - R[2][2] * g[1];
|
||||
ret[2][1] += R[2][2] * g[0] - R[2][0] * g[2];
|
||||
ret[2][2] += R[2][0] * g[1] - R[2][1] * g[0];
|
||||
|
||||
// Renormalise rows
|
||||
float rowLengthSq;
|
||||
for (uint8_t r = 0; r < 3; r++) {
|
||||
rowLengthSq = ret[r][0] * ret[r][0] + ret[r][1] * ret[r][1] + ret[r][2] * ret[r][2];
|
||||
if (is_positive(rowLengthSq)) {
|
||||
// Use linear approximation for inverse sqrt taking advantage of the row length being close to 1.0
|
||||
const float rowLengthInv = 1.5f - 0.5f * rowLengthSq;
|
||||
Vector3f &row = ret[r];
|
||||
row *= rowLengthInv;
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
bool EKFGSF_yaw::getYawData(float *yaw, float *yawVariance)
|
||||
{
|
||||
if (!vel_fuse_running) {
|
||||
return false;
|
||||
}
|
||||
*yaw = GSF.yaw;
|
||||
*yawVariance = GSF.yaw_variance;
|
||||
return true;
|
||||
}
|
134
libraries/AP_NavEKF/EKFGSF_yaw.h
Normal file
134
libraries/AP_NavEKF/EKFGSF_yaw.h
Normal file
@ -0,0 +1,134 @@
|
||||
#pragma once
|
||||
|
||||
#pragma GCC optimize("O2")
|
||||
|
||||
#include <AP_NavEKF/AP_Nav_Common.h>
|
||||
#include <AP_Math/AP_Math.h>
|
||||
#include <AP_Math/vectorN.h>
|
||||
|
||||
#define IMU_DT_MIN_SEC 0.001f // Minimum delta time between IMU samples (sec)
|
||||
|
||||
class EKFGSF_yaw
|
||||
{
|
||||
public:
|
||||
// Constructor
|
||||
EKFGSF_yaw();
|
||||
|
||||
// Update Filter States - this should be called whenever new IMU data is available
|
||||
void update(const Vector3f &delAng,// IMU delta angle rotation vector meassured in body frame (rad)
|
||||
const Vector3f &delVel,// IMU delta velocity vector meassured in body frame (m/s)
|
||||
const float delAngDT, // time interval that delAng was integrated over (sec) - must be no less than IMU_DT_MIN_SEC
|
||||
const float delVelDT, // time interval that delVel was integrated over (sec) - must be no less than IMU_DT_MIN_SEC
|
||||
bool runEKF, // set to true when flying or movement suitable for yaw estimation
|
||||
float TAS); // true airspeed used for centripetal accel compensation - set to 0 when not required.
|
||||
|
||||
void pushVelData(Vector2f vel, // NE velocity measurement (m/s)
|
||||
float velAcc); // 1-sigma accuracy of velocity measurement (m/s)
|
||||
|
||||
// get solution data for logging
|
||||
// return false if yaw estimation is inactive
|
||||
bool getLogData(float *yaw_composite, float *yaw_composite_variance, float yaw[N_MODELS_EKFGSF], float innov_VN[N_MODELS_EKFGSF], float innov_VE[N_MODELS_EKFGSF], float weight[N_MODELS_EKFGSF]);
|
||||
|
||||
// get yaw estimated and corresponding variance
|
||||
// return false if yaw estimation is inactive
|
||||
bool getYawData(float *yaw, float *yawVariance);
|
||||
|
||||
private:
|
||||
|
||||
typedef float ftype;
|
||||
#if MATH_CHECK_INDEXES
|
||||
typedef VectorN<ftype,2> Vector2;
|
||||
typedef VectorN<ftype,3> Vector3;
|
||||
typedef VectorN<VectorN<ftype,3>,3> Matrix3;
|
||||
#else
|
||||
typedef ftype Vector2[2];
|
||||
typedef ftype Vector3[3];
|
||||
typedef ftype Matrix3[3][3];
|
||||
|
||||
#endif
|
||||
|
||||
// Parameters
|
||||
const float EKFGSF_gyroNoise{1.0e-1f}; // yaw rate noise used for covariance prediction (rad/sec)
|
||||
const float EKFGSF_accelNoise{2.0f}; // horizontal accel noise used for covariance prediction (m/sec**2)
|
||||
const float EKFGSF_tiltGain{0.2f}; // gain from tilt error to gyro correction for complementary filter (1/sec)
|
||||
const float EKFGSF_gyroBiasGain{0.04f}; // gain applied to integral of gyro correction for complementary filter (1/sec)
|
||||
const float EKFGSF_accelFiltRatio{10.0f}; // ratio of time constant of AHRS tilt correction to time constant of first order LPF applied to accel data used by ahrs
|
||||
|
||||
// Declarations used by the bank of AHRS complementary filters that use IMU data augmented by true
|
||||
// airspeed data when in fixed wing mode to estimate the quaternions that are used to rotate IMU data into a
|
||||
// Front, Right, Yaw frame of reference.
|
||||
Vector3f delta_angle;
|
||||
Vector3f delta_velocity;
|
||||
float angle_dt;
|
||||
float velocity_dt;
|
||||
struct ahrs_struct {
|
||||
Matrix3f R; // matrix that rotates a vector from body to earth frame
|
||||
Vector3f gyro_bias; // gyro bias learned and used by the quaternion calculation
|
||||
bool aligned{false}; // true when AHRS has been aligned
|
||||
float accel_FR[2]; // front-right acceleration vector in a horizontal plane (m/s/s)
|
||||
float vel_NE[2]; // NE velocity vector from last GPS measurement (m/s)
|
||||
bool fuse_gps; // true when GPS should be fused on that frame
|
||||
float accel_dt; // time step used when generating _simple_accel_FR data (sec)
|
||||
};
|
||||
ahrs_struct AHRS[N_MODELS_EKFGSF];
|
||||
bool ahrs_tilt_aligned; // true the initial tilt alignment has been calculated
|
||||
float accel_gain; // gain from accel vector tilt error to rate gyro correction used by AHRS calculation
|
||||
Vector3f ahrs_accel; // filtered body frame specific force vector used by AHRS calculation (m/s/s)
|
||||
float ahrs_accel_norm; // length of body frame specific force vector used by AHRS calculation (m/s/s)
|
||||
bool ahrs_turn_comp_enabled; // true when compensation for centripetal acceleration in coordinated turns using true airspeed is being used.
|
||||
float true_airspeed; // true airspeed used to correct for centripetal acceleratoin in coordinated turns (m/s)
|
||||
|
||||
// Runs quaternion prediction for the selected AHRS using IMU (and optionally true airspeed) data
|
||||
void predictAHRS(const uint8_t mdl_idx);
|
||||
|
||||
// Applies a body frame delta angle to a body to earth frame rotation matrix using a small angle approximation
|
||||
Matrix3f updateRotMat(const Matrix3f &R, const Vector3f &g);
|
||||
|
||||
// Initialises the tilt (roll and pitch) for all AHRS using IMU acceleration data
|
||||
void alignTilt();
|
||||
|
||||
// Initialises the yaw angle for all AHRS using a uniform distribution of yaw angles between -180 and +180 deg
|
||||
void alignYaw();
|
||||
|
||||
// The Following declarations are used by bank of EKF's that estimate yaw angle starting from a different yaw hypothesis for each filter.
|
||||
|
||||
struct EKF_struct {
|
||||
float X[3]; // Vel North (m/s), Vel East (m/s), yaw (rad)
|
||||
float P[3][3]; // covariance matrix
|
||||
float S[2][2]; // N,E velocity innovation variance (m/s)^2
|
||||
float innov[2]; // Velocity N,E innovation (m/s)
|
||||
};
|
||||
EKF_struct EKF[N_MODELS_EKFGSF];
|
||||
bool vel_fuse_running; // true when the bank of EKF's has started fusing GPS velocity data
|
||||
bool vel_data_updated; // true when velocity data has been updated
|
||||
bool run_ekf_gsf; // true when operating condition is suitable for to run the GSF and EKF models and fuse velocity data
|
||||
Vector2f vel_NE; // NE velocity observations (m/s)
|
||||
float vel_accuracy; // 1-sigma accuracy of velocity observations (m/s)
|
||||
|
||||
// Initialises the EKF's and GSF states, but not the AHRS complementary filters
|
||||
void initialise();
|
||||
|
||||
// Runs the state and covariance prediction for the selected EKF
|
||||
void predict(const uint8_t mdl_idx);
|
||||
|
||||
// Runs the state and covariance update for the selected EKF using the GPS NE velocity measurement
|
||||
// Returns false if the sttae and covariance correction failed
|
||||
bool correct(const uint8_t mdl_idx);
|
||||
|
||||
// Forces symmetry on the covariance matrix for the selected EKF
|
||||
void forceSymmetry(const uint8_t mdl_idx);
|
||||
|
||||
// The following declarations are used by the Gaussian Sum Filter that combines the state estimates from the bank of
|
||||
// EKF's to form a single state estimate.
|
||||
|
||||
struct GSF_struct {
|
||||
float yaw; // yaw (rad)
|
||||
float yaw_variance; // Yaw state variance (rad^2)
|
||||
float weights[N_MODELS_EKFGSF]; // Weighting applied to each EKF model. Sum of weights is unity.
|
||||
};
|
||||
GSF_struct GSF;
|
||||
|
||||
// Returns the probability for a selected model assuming a Gaussian error distribution
|
||||
// Used by the Guassian Sum Filter to calculate the weightings when combining the outputs from the bank of EKF's
|
||||
float gaussianDensity(const uint8_t mdl_idx) const;
|
||||
};
|
Loading…
Reference in New Issue
Block a user