2013-12-28 07:15:29 -04:00
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
# include <AP_HAL.h>
# include <AC_PosControl.h>
extern const AP_HAL : : HAL & hal ;
const AP_Param : : GroupInfo AC_PosControl : : var_info [ ] PROGMEM = {
2013-12-28 10:04:45 -04:00
// @Param: THR_HOVER
// @DisplayName: Throttle Hover
// @Description: The autopilot's estimate of the throttle required to maintain a level hover. Calculated automatically from the pilot's throttle input while in stabilize mode
2013-12-28 07:15:29 -04:00
// @Range: 0 1000
2013-12-28 10:04:45 -04:00
// @Units: Percent*10
// @User: Advanced
AP_GROUPINFO ( " THR_HOVER " , 0 , AC_PosControl , _throttle_hover , POSCONTROL_THROTTLE_HOVER ) ,
2013-12-28 07:15:29 -04:00
AP_GROUPEND
} ;
// Default constructor.
// Note that the Vector/Matrix constructors already implicitly zero
// their values.
//
2013-12-28 10:04:45 -04:00
AC_PosControl : : AC_PosControl ( const AP_AHRS & ahrs , const AP_InertialNav & inav ,
const AP_Motors & motors , AC_AttitudeControl & attitude_control ,
APM_PI & pi_alt_pos , AC_PID & pid_alt_rate , AC_PID & pid_alt_accel ,
APM_PI & pi_pos_lat , APM_PI & pi_pos_lon , AC_PID & pid_rate_lat , AC_PID & pid_rate_lon ) :
2013-12-28 07:15:29 -04:00
_ahrs ( ahrs ) ,
2013-12-28 10:04:45 -04:00
_inav ( inav ) ,
_motors ( motors ) ,
2013-12-28 07:15:29 -04:00
_attitude_control ( attitude_control ) ,
2013-12-28 10:04:45 -04:00
_pi_alt_pos ( pi_alt_pos ) ,
2013-12-28 07:15:29 -04:00
_pid_alt_rate ( pid_alt_rate ) ,
_pid_alt_accel ( pid_alt_accel ) ,
2013-12-28 10:04:45 -04:00
_pi_pos_lat ( pi_pos_lat ) ,
_pi_pos_lon ( pi_pos_lon ) ,
2013-12-28 07:15:29 -04:00
_pid_rate_lat ( pid_rate_lat ) ,
_pid_rate_lon ( pid_rate_lon ) ,
2013-12-28 10:04:45 -04:00
_dt ( POSCONTROL_DT_10HZ ) ,
_last_update_ms ( 0 ) ,
_last_update_rate_ms ( 0 ) ,
_last_update_accel_ms ( 0 ) ,
_step ( 0 ) ,
2014-01-17 22:53:46 -04:00
_speed_down_cms ( POSCONTROL_SPEED_DOWN ) ,
_speed_up_cms ( POSCONTROL_SPEED_UP ) ,
2013-12-28 10:04:45 -04:00
_speed_cms ( POSCONTROL_SPEED ) ,
2014-01-17 22:53:46 -04:00
_accel_z_cms ( POSCONTROL_ACCEL_XY_MAX ) , // To-Do: check this default
2013-12-28 10:04:45 -04:00
_accel_cms ( POSCONTROL_ACCEL_XY_MAX ) , // To-Do: check this default
2014-01-17 22:53:46 -04:00
_leash ( POSCONTROL_LEASH_LENGTH_MIN ) ,
2013-12-28 07:15:29 -04:00
_cos_yaw ( 1.0 ) ,
_sin_yaw ( 0.0 ) ,
_cos_pitch ( 1.0 ) ,
2014-01-17 22:53:46 -04:00
_roll_target ( 0.0 ) ,
_pitch_target ( 0.0 ) ,
_vel_target_filt_z ( 0 ) ,
_alt_max ( 0 ) ,
_distance_to_target ( 0 ) ,
_xy_step ( 0 ) ,
_dt_xy ( 0 )
2013-12-28 07:15:29 -04:00
{
AP_Param : : setup_object_defaults ( this , var_info ) ;
2014-01-17 22:53:46 -04:00
// initialise flags
_flags . force_recalc_xy = false ;
# if HAL_CPU_CLASS >= HAL_CPU_CLASS_150
_flags . slow_cpu = false ;
# else
_flags . slow_cpu = true ;
# endif
2013-12-28 07:15:29 -04:00
}
2013-12-28 10:04:45 -04:00
///
/// z-axis position controller
///
2013-12-28 07:15:29 -04:00
2014-01-05 23:30:51 -04:00
// get_alt_error - returns altitude error in cm
float AC_PosControl : : get_alt_error ( ) const
{
return ( _pos_target . z - _inav . get_position ( ) . z ) ;
}
2013-12-30 09:12:59 -04:00
/// set_target_to_stopping_point_z - returns reasonable stopping altitude in cm above home
void AC_PosControl : : set_target_to_stopping_point_z ( )
2013-12-28 10:04:45 -04:00
{
const Vector3f & curr_pos = _inav . get_position ( ) ;
const Vector3f & curr_vel = _inav . get_velocity ( ) ;
float linear_distance ; // half the distace we swap between linear and sqrt and the distace we offset sqrt
float linear_velocity ; // the velocity we swap between linear and sqrt
// calculate the velocity at which we switch from calculating the stopping point using a linear funcction to a sqrt function
linear_velocity = POSCONTROL_ALT_HOLD_ACCEL_MAX / _pi_alt_pos . kP ( ) ;
if ( fabs ( curr_vel . z ) < linear_velocity ) {
// if our current velocity is below the cross-over point we use a linear function
2013-12-30 09:12:59 -04:00
_pos_target . z = curr_pos . z + curr_vel . z / _pi_alt_pos . kP ( ) ;
2013-12-28 07:15:29 -04:00
} else {
2013-12-28 10:04:45 -04:00
linear_distance = POSCONTROL_ALT_HOLD_ACCEL_MAX / ( 2.0f * _pi_alt_pos . kP ( ) * _pi_alt_pos . kP ( ) ) ;
if ( curr_vel . z > 0 ) {
2013-12-30 09:12:59 -04:00
_pos_target . z = curr_pos . z + ( linear_distance + curr_vel . z * curr_vel . z / ( 2.0f * POSCONTROL_ALT_HOLD_ACCEL_MAX ) ) ;
2013-12-28 07:15:29 -04:00
} else {
2013-12-30 09:12:59 -04:00
_pos_target . z = curr_pos . z - ( linear_distance + curr_vel . z * curr_vel . z / ( 2.0f * POSCONTROL_ALT_HOLD_ACCEL_MAX ) ) ;
2013-12-28 07:15:29 -04:00
}
}
2013-12-30 09:12:59 -04:00
_pos_target . z = constrain_float ( _pos_target . z , curr_pos . z - POSCONTROL_STOPPING_DIST_Z_MAX , curr_pos . z + POSCONTROL_STOPPING_DIST_Z_MAX ) ;
2013-12-28 07:15:29 -04:00
}
2013-12-30 09:12:59 -04:00
/// init_takeoff - initialises target altitude if we are taking off
void AC_PosControl : : init_takeoff ( )
{
const Vector3f & curr_pos = _inav . get_position ( ) ;
_pos_target . z = curr_pos . z + POSCONTROL_TAKEOFF_JUMP_CM ;
// clear i term from acceleration controller
if ( _pid_alt_accel . get_integrator ( ) < 0 ) {
_pid_alt_accel . reset_I ( ) ;
}
}
2014-01-17 22:53:46 -04:00
/// update_z_controller - fly to altitude in cm above home
void AC_PosControl : : update_z_controller ( )
2013-12-28 10:04:45 -04:00
{
// call position controller
2013-12-30 09:12:59 -04:00
pos_to_rate_z ( ) ;
2013-12-28 10:04:45 -04:00
}
/// climb_at_rate - climb at rate provided in cm/s
void AC_PosControl : : climb_at_rate ( const float rate_target_cms )
{
const Vector3f & curr_pos = _inav . get_position ( ) ;
// clear position limit flags
_limit . pos_up = false ;
_limit . pos_down = false ;
// adjust desired alt if motors have not hit their limits
// To-Do: should we use some other limits? this controller's vel limits?
if ( ( rate_target_cms < 0 & & ! _motors . limit . throttle_lower ) | | ( rate_target_cms > 0 & & ! _motors . limit . throttle_upper ) ) {
_pos_target . z + = rate_target_cms * _dt ;
}
// do not let target altitude get too far from current altitude
if ( _pos_target . z < curr_pos . z - POSCONTROL_LEASH_Z ) {
_pos_target . z = curr_pos . z - POSCONTROL_LEASH_Z ;
_limit . pos_down = true ;
}
if ( _pos_target . z > curr_pos . z + POSCONTROL_LEASH_Z ) {
_pos_target . z = curr_pos . z + POSCONTROL_LEASH_Z ;
_limit . pos_up = true ;
}
// do not let target alt get above limit
if ( _alt_max > 0 & & _pos_target . z > _alt_max ) {
_pos_target . z = _alt_max ;
_limit . pos_up = true ;
}
// call position controller
2013-12-30 09:12:59 -04:00
pos_to_rate_z ( ) ;
2013-12-28 10:04:45 -04:00
}
// pos_to_rate_z - position to rate controller for Z axis
// calculates desired rate in earth-frame z axis and passes to rate controller
// vel_up_max, vel_down_max should have already been set before calling this method
2013-12-30 09:12:59 -04:00
void AC_PosControl : : pos_to_rate_z ( )
2013-12-28 07:15:29 -04:00
{
2013-12-28 10:04:45 -04:00
const Vector3f & curr_pos = _inav . get_position ( ) ;
2014-01-17 22:53:46 -04:00
float linear_distance ; // half the distance we swap between linear and sqrt and the distance we offset sqrt.
2013-12-28 07:15:29 -04:00
// calculate altitude error
2013-12-30 09:12:59 -04:00
_pos_error . z = _pos_target . z - curr_pos . z ;
2013-12-28 07:15:29 -04:00
// check kP to avoid division by zero
2013-12-28 10:04:45 -04:00
if ( _pi_alt_pos . kP ( ) ! = 0 ) {
linear_distance = POSCONTROL_ALT_HOLD_ACCEL_MAX / ( 2.0f * _pi_alt_pos . kP ( ) * _pi_alt_pos . kP ( ) ) ;
if ( _pos_error . z > 2 * linear_distance ) {
_vel_target . z = safe_sqrt ( 2.0f * POSCONTROL_ALT_HOLD_ACCEL_MAX * ( _pos_error . z - linear_distance ) ) ;
} else if ( _pos_error . z < - 2.0f * linear_distance ) {
_vel_target . z = - safe_sqrt ( 2.0f * POSCONTROL_ALT_HOLD_ACCEL_MAX * ( - _pos_error . z - linear_distance ) ) ;
2013-12-28 07:15:29 -04:00
} else {
2013-12-28 10:04:45 -04:00
_vel_target . z = _pi_alt_pos . get_p ( _pos_error . z ) ;
2013-12-28 07:15:29 -04:00
}
} else {
2013-12-28 10:04:45 -04:00
_vel_target . z = 0 ;
2013-12-28 07:15:29 -04:00
}
// call rate based throttle controller which will update accel based throttle controller targets
2013-12-28 10:04:45 -04:00
rate_to_accel_z ( _vel_target . z ) ;
}
2013-12-28 07:15:29 -04:00
2013-12-28 10:04:45 -04:00
// rate_to_accel_z - calculates desired accel required to achieve the velocity target
// calculates desired acceleration and calls accel throttle controller
void AC_PosControl : : rate_to_accel_z ( float vel_target_z )
{
uint32_t now = hal . scheduler - > millis ( ) ;
const Vector3f & curr_vel = _inav . get_velocity ( ) ;
float z_target_speed_delta ; // The change in requested speed
float p ; // used to capture pid values for logging
float desired_accel ; // the target acceleration if the accel based throttle is enabled, otherwise the output to be sent to the motors
// check speed limits
// To-Do: check these speed limits here or in the pos->rate controller
_limit . vel_up = false ;
_limit . vel_down = false ;
2014-01-17 22:53:46 -04:00
if ( _vel_target . z < _speed_down_cms ) {
_vel_target . z = _speed_down_cms ;
2013-12-28 10:04:45 -04:00
_limit . vel_down = true ;
}
2014-01-17 22:53:46 -04:00
if ( _vel_target . z > _speed_up_cms ) {
_vel_target . z = _speed_up_cms ;
2013-12-28 10:04:45 -04:00
_limit . vel_up = true ;
}
// reset velocity error and filter if this controller has just been engaged
if ( now - _last_update_rate_ms > 100 ) {
// Reset Filter
_vel_error . z = 0 ;
_vel_target_filt_z = vel_target_z ;
desired_accel = 0 ;
} else {
// calculate rate error and filter with cut off frequency of 2 Hz
//To-Do: adjust constant below based on update rate
_vel_error . z = _vel_error . z + 0.20085f * ( ( vel_target_z - curr_vel . z ) - _vel_error . z ) ;
// feed forward acceleration based on change in the filtered desired speed.
z_target_speed_delta = 0.20085f * ( vel_target_z - _vel_target_filt_z ) ;
_vel_target_filt_z = _vel_target_filt_z + z_target_speed_delta ;
desired_accel = z_target_speed_delta / _dt ;
}
_last_update_rate_ms = now ;
// calculate p
p = _pid_alt_rate . kP ( ) * _vel_error . z ;
// consolidate and constrain target acceleration
desired_accel + = p ;
desired_accel = constrain_int32 ( desired_accel , - 32000 , 32000 ) ;
// To-Do: re-enable PID logging?
// TO-DO: ensure throttle cruise is updated some other way in the main code or attitude control
2013-12-28 07:15:29 -04:00
2013-12-28 10:04:45 -04:00
// set target for accel based throttle controller
accel_to_throttle ( desired_accel ) ;
2013-12-28 07:15:29 -04:00
}
2013-12-28 10:04:45 -04:00
// accel_to_throttle - alt hold's acceleration controller
// calculates a desired throttle which is sent directly to the motors
void AC_PosControl : : accel_to_throttle ( float accel_target_z )
{
uint32_t now = hal . scheduler - > millis ( ) ;
float z_accel_meas ; // actual acceleration
int32_t p , i , d ; // used to capture pid values for logging
// Calculate Earth Frame Z acceleration
z_accel_meas = - ( _ahrs . get_accel_ef ( ) . z + GRAVITY_MSS ) * 100.0f ;
// reset target altitude if this controller has just been engaged
if ( now - _last_update_accel_ms > 100 ) {
// Reset Filter
_accel_error . z = 0 ;
} else {
// calculate accel error and Filter with fc = 2 Hz
// To-Do: replace constant below with one that is adjusted for update rate
_accel_error . z = _accel_error . z + 0.11164f * ( constrain_float ( accel_target_z - z_accel_meas , - 32000 , 32000 ) - _accel_error . z ) ;
}
_last_update_accel_ms = now ;
// separately calculate p, i, d values for logging
p = _pid_alt_accel . get_p ( _accel_error . z ) ;
// get i term
i = _pid_alt_accel . get_integrator ( ) ;
// update i term as long as we haven't breached the limits or the I term will certainly reduce
// To-Do: should this be replaced with limits check from attitude_controller?
if ( ( ! _motors . limit . throttle_lower & & ! _motors . limit . throttle_upper ) | | ( i > 0 & & _accel_error . z < 0 ) | | ( i < 0 & & _accel_error . z > 0 ) ) {
i = _pid_alt_accel . get_i ( _accel_error . z , _dt ) ;
}
// get d term
d = _pid_alt_accel . get_d ( _accel_error . z , _dt ) ;
// To-Do: pull min/max throttle from motors
// To-Do: where to get hover throttle?
// To-Do: we had a contraint here but it's now removed, is this ok? with the motors library handle it ok?
_attitude_control . set_throttle_out ( ( int16_t ) p + i + d + _throttle_hover , true ) ;
2014-01-05 23:30:51 -04:00
2013-12-28 10:04:45 -04:00
// to-do add back in PID logging?
}
/*
2013-12-28 07:15:29 -04:00
// get_throttle_althold_with_slew - altitude controller with slew to avoid step changes in altitude target
// calls normal althold controller which updates accel based throttle controller targets
static void
get_throttle_althold_with_slew ( int32_t target_alt , int16_t min_climb_rate , int16_t max_climb_rate )
{
float alt_change = target_alt - controller_desired_alt ;
// adjust desired alt if motors have not hit their limits
if ( ( alt_change < 0 & & ! motors . limit . throttle_lower ) | | ( alt_change > 0 & & ! motors . limit . throttle_upper ) ) {
controller_desired_alt + = constrain_float ( alt_change , min_climb_rate * 0.02f , max_climb_rate * 0.02f ) ;
}
// do not let target altitude get too far from current altitude
controller_desired_alt = constrain_float ( controller_desired_alt , current_loc . alt - 750 , current_loc . alt + 750 ) ;
get_throttle_althold ( controller_desired_alt , min_climb_rate - 250 , max_climb_rate + 250 ) ; // 250 is added to give head room to alt hold controller
}
// get_throttle_rate_stabilized - rate controller with additional 'stabilizer'
// 'stabilizer' ensure desired rate is being met
// calls normal throttle rate controller which updates accel based throttle controller targets
static void
get_throttle_rate_stabilized ( int16_t target_rate )
{
// adjust desired alt if motors have not hit their limits
if ( ( target_rate < 0 & & ! motors . limit . throttle_lower ) | | ( target_rate > 0 & & ! motors . limit . throttle_upper ) ) {
controller_desired_alt + = target_rate * 0.02f ;
}
// do not let target altitude get too far from current altitude
controller_desired_alt = constrain_float ( controller_desired_alt , current_loc . alt - 750 , current_loc . alt + 750 ) ;
# if AC_FENCE == ENABLED
// do not let target altitude be too close to the fence
// To-Do: add this to other altitude controllers
if ( ( fence . get_enabled_fences ( ) & AC_FENCE_TYPE_ALT_MAX ) ! = 0 ) {
float alt_limit = fence . get_safe_alt ( ) * 100.0f ;
if ( controller_desired_alt > alt_limit ) {
controller_desired_alt = alt_limit ;
}
}
# endif
// update target altitude for reporting purposes
set_target_alt_for_reporting ( controller_desired_alt ) ;
get_throttle_althold ( controller_desired_alt , - g . pilot_velocity_z_max - 250 , g . pilot_velocity_z_max + 250 ) ; // 250 is added to give head room to alt hold controller
}
2013-12-28 10:04:45 -04:00
*/
2013-12-28 07:15:29 -04:00
///
/// position controller
///
2014-01-17 22:53:46 -04:00
/// set_pos_target in cm from home
void AC_PosControl : : set_pos_target ( const Vector3f & position )
{
_pos_target = position ;
// initialise roll and pitch to current roll and pitch. This avoids a twitch between when the target is set and the pos controller is first run
_roll_target = constrain_int32 ( _ahrs . roll_sensor , - _attitude_control . lean_angle_max ( ) , _attitude_control . lean_angle_max ( ) ) ;
_pitch_target = constrain_int32 ( _ahrs . pitch_sensor , - _attitude_control . lean_angle_max ( ) , _attitude_control . lean_angle_max ( ) ) ;
}
/// get_stopping_point_xy - calculates stopping point based on current position, velocity, vehicle acceleration
/// distance_max allows limiting distance to stopping point
/// results placed in stopping_position vector
/// set_accel_xy() should be called before this method to set vehicle acceleration
/// set_leash_length() should have been called before this method
void AC_PosControl : : get_stopping_point_xy ( Vector3f & stopping_point ) const
2013-12-28 07:15:29 -04:00
{
2014-01-17 22:53:46 -04:00
Vector3f curr_pos = _inav . get_position ( ) ;
Vector3f curr_vel = _inav . get_velocity ( ) ;
float linear_distance ; // the distance at which we swap from a linear to sqrt response
float linear_velocity ; // the velocity above which we swap from a linear to sqrt response
float stopping_dist ; // the distance within the vehicle can stop
float kP = _pi_pos_lat . kP ( ) ;
2013-12-28 07:15:29 -04:00
// calculate current velocity
2014-01-17 22:53:46 -04:00
float vel_total = safe_sqrt ( curr_vel . x * curr_vel . x + curr_vel . y * curr_vel . y ) ;
2013-12-28 07:15:29 -04:00
// avoid divide by zero by using current position if the velocity is below 10cm/s, kP is very low or acceleration is zero
2014-01-17 22:53:46 -04:00
if ( vel_total < 10.0f | | kP < = 0.0f | | _accel_cms < = 0.0f ) {
stopping_point = curr_pos ;
2013-12-28 07:15:29 -04:00
return ;
}
// calculate point at which velocity switches from linear to sqrt
2014-01-17 22:53:46 -04:00
linear_velocity = _accel_cms / kP ;
2013-12-28 07:15:29 -04:00
// calculate distance within which we can stop
if ( vel_total < linear_velocity ) {
2014-01-17 22:53:46 -04:00
stopping_dist = vel_total / kP ;
2013-12-28 07:15:29 -04:00
} else {
2014-01-17 22:53:46 -04:00
linear_distance = _accel_cms / ( 2.0f * kP * kP ) ;
stopping_dist = linear_distance + ( vel_total * vel_total ) / ( 2.0f * _accel_cms ) ;
2013-12-28 07:15:29 -04:00
}
2014-01-17 22:53:46 -04:00
// constrain stopping distance
stopping_dist = constrain_float ( stopping_dist , 0 , _leash ) ;
2013-12-28 07:15:29 -04:00
2014-01-17 22:53:46 -04:00
// convert the stopping distance into a stopping point using velocity vector
stopping_point . x = curr_pos . x + ( stopping_dist * curr_vel . x / vel_total ) ;
stopping_point . y = curr_pos . y + ( stopping_dist * curr_vel . y / vel_total ) ;
2013-12-28 07:15:29 -04:00
}
/// get_distance_to_target - get horizontal distance to loiter target in cm
float AC_PosControl : : get_distance_to_target ( ) const
{
return _distance_to_target ;
}
2014-01-17 22:53:46 -04:00
/// update_pos_controller - run the horizontal position controller - should be called at 100hz or higher
void AC_PosControl : : update_pos_controller ( bool use_desired_velocity )
2013-12-28 07:15:29 -04:00
{
// catch if we've just been started
2014-01-17 22:53:46 -04:00
uint32_t now = hal . scheduler - > millis ( ) ;
if ( ( now - _last_update_ms ) > = 1000 ) {
_last_update_ms = now ;
reset_I_xy ( ) ;
_xy_step = 0 ;
2013-12-28 07:15:29 -04:00
}
2014-01-17 22:53:46 -04:00
// reset step back to 0 if loiter or waypoint parents have triggered an update and we completed the last full cycle
if ( _flags . force_recalc_xy & & _xy_step > 3 ) {
_flags . force_recalc_xy = false ;
_xy_step = 0 ;
2013-12-28 07:15:29 -04:00
}
// run loiter steps
2014-01-17 22:53:46 -04:00
switch ( _xy_step ) {
2013-12-28 07:15:29 -04:00
case 0 :
// capture time since last iteration
2014-01-17 22:53:46 -04:00
_dt_xy = ( now - _last_update_ms ) / 1000.0f ;
_last_update_ms = now ;
2013-12-28 07:15:29 -04:00
// translate any adjustments from pilot to loiter target
2014-01-17 22:53:46 -04:00
desired_vel_to_pos ( _dt_xy ) ;
_xy_step + + ;
hal . console - > printf_P ( PSTR ( " 0 " ) ) ;
2013-12-28 07:15:29 -04:00
break ;
case 1 :
2014-01-17 22:53:46 -04:00
// run position controller's position error to desired velocity step
pos_to_rate_xy ( use_desired_velocity , _dt_xy ) ;
_xy_step + + ;
hal . console - > printf_P ( PSTR ( " 1 " ) ) ;
2013-12-28 07:15:29 -04:00
break ;
case 2 :
2014-01-17 22:53:46 -04:00
// run position controller's velocity to acceleration step
rate_to_accel_xy ( _dt_xy ) ;
_xy_step + + ;
hal . console - > printf_P ( PSTR ( " 2 " ) ) ;
2013-12-28 07:15:29 -04:00
break ;
case 3 :
2014-01-17 22:53:46 -04:00
// run position controller's acceleration to lean angle step
accel_to_lean_angles ( ) ;
_xy_step + + ;
hal . console - > printf_P ( PSTR ( " 3 " ) ) ;
2013-12-28 07:15:29 -04:00
break ;
}
}
2014-01-17 22:53:46 -04:00
///
/// private methods
///
2013-12-28 07:15:29 -04:00
2014-01-17 22:53:46 -04:00
/// desired_vel_to_pos - move position target using desired velocities
void AC_PosControl : : desired_vel_to_pos ( float nav_dt )
{
Vector2f target_vel_adj ;
float vel_desired_total ;
2013-12-28 07:15:29 -04:00
2014-01-17 22:53:46 -04:00
// range check nav_dt
if ( nav_dt < 0 ) {
2013-12-28 07:15:29 -04:00
return ;
}
2014-01-17 22:53:46 -04:00
// constrain and scale the desired velocity
vel_desired_total = safe_sqrt ( _vel_desired . x * _vel_desired . x + _vel_desired . y * _vel_desired . y ) ;
if ( vel_desired_total > _speed_cms & & vel_desired_total > 0.0f ) {
_vel_desired . x = _speed_cms * _vel_desired . x / vel_desired_total ;
_vel_desired . y = _speed_cms * _vel_desired . y / vel_desired_total ;
2013-12-28 07:15:29 -04:00
}
2014-01-17 22:53:46 -04:00
// update target position
_pos_target . x + = _vel_desired . x * nav_dt ;
_pos_target . y + = _vel_desired . y * nav_dt ;
2013-12-28 07:15:29 -04:00
}
2014-01-17 22:53:46 -04:00
/// pos_to_rate_xy - horizontal position error to velocity controller
/// converts position (_pos_target) to target velocity (_vel_target)
/// when use_desired_rate is set to true:
/// desired velocity (_vel_desired) is combined into final target velocity and
/// velocity due to position error is reduce to a maximum of 1m/s
void AC_PosControl : : pos_to_rate_xy ( bool use_desired_rate , float dt )
2013-12-28 07:15:29 -04:00
{
2014-01-17 22:53:46 -04:00
Vector3f curr_pos = _inav . get_position ( ) ;
float linear_distance ; // the distance we swap between linear and sqrt velocity response
float kP = _pi_pos_lat . kP ( ) ;
2013-12-28 07:15:29 -04:00
// avoid divide by zero
if ( kP < = 0.0f ) {
2014-01-17 22:53:46 -04:00
_vel_target . x = 0.0 ;
_vel_target . y = 0.0 ;
2013-12-28 07:15:29 -04:00
} else {
// calculate distance error
2014-01-17 22:53:46 -04:00
_pos_error . x = _pos_target . x - curr_pos . x ;
_pos_error . y = _pos_target . y - curr_pos . y ;
// constrain target position to within reasonable distance of current location
_distance_to_target = safe_sqrt ( _pos_error . x * _pos_error . x + _pos_error . y * _pos_error . y ) ;
if ( _distance_to_target > _leash & & _distance_to_target > 0.0f ) {
_pos_target . x = curr_pos . x + _leash * _pos_error . x / _distance_to_target ;
_pos_target . y = curr_pos . y + _leash * _pos_error . y / _distance_to_target ;
// re-calculate distance error
_pos_error . x = _pos_target . x - curr_pos . x ;
_pos_error . y = _pos_target . y - curr_pos . y ;
_distance_to_target = _leash ;
}
2013-12-28 07:15:29 -04:00
2014-01-17 22:53:46 -04:00
// calculate the distance at which we swap between linear and sqrt velocity response
linear_distance = _accel_cms / ( 2.0f * kP * kP ) ;
2013-12-28 07:15:29 -04:00
2014-01-17 22:53:46 -04:00
if ( _distance_to_target > 2.0f * linear_distance ) {
// velocity response grows with the square root of the distance
float vel_sqrt = safe_sqrt ( 2.0f * _accel_cms * ( _distance_to_target - linear_distance ) ) ;
_vel_target . x = vel_sqrt * _pos_error . x / _distance_to_target ;
_vel_target . y = vel_sqrt * _pos_error . y / _distance_to_target ;
} else {
// velocity response grows linearly with the distance
_vel_target . x = _pi_pos_lat . kP ( ) * _pos_error . x ;
_vel_target . y = _pi_pos_lon . kP ( ) * _pos_error . y ;
}
2013-12-28 07:15:29 -04:00
2014-01-17 22:53:46 -04:00
// decide velocity limit due to position error
float vel_max_from_pos_error ;
if ( use_desired_rate ) {
// if desired velocity (i.e. velocity feed forward) is being used we limit the maximum velocity correction due to position error to 2m/s
vel_max_from_pos_error = POSCONTROL_VEL_XY_MAX_FROM_POS_ERR ;
2013-12-28 07:15:29 -04:00
} else {
2014-01-17 22:53:46 -04:00
// if desired velocity is not used, we allow position error to increase speed up to maximum speed
vel_max_from_pos_error = _speed_cms ;
2013-12-28 07:15:29 -04:00
}
2014-01-17 22:53:46 -04:00
// scale velocity to stays within limits
float vel_total = safe_sqrt ( _vel_target . x * _vel_target . x + _vel_target . y * _vel_target . y ) ;
if ( vel_total > vel_max_from_pos_error ) {
_vel_target . x = vel_max_from_pos_error * _vel_target . x / vel_total ;
_vel_target . y = vel_max_from_pos_error * _vel_target . y / vel_total ;
2013-12-28 07:15:29 -04:00
}
2014-01-17 22:53:46 -04:00
// add desired velocity (i.e. feed forward).
if ( use_desired_rate ) {
_vel_target . x + = _vel_desired . x ;
_vel_target . y + = _vel_desired . y ;
}
2013-12-28 07:15:29 -04:00
}
}
2014-01-17 22:53:46 -04:00
/// rate_to_accel_xy - horizontal desired rate to desired acceleration
2013-12-28 07:15:29 -04:00
/// converts desired velocities in lat/lon directions to accelerations in lat/lon frame
2014-01-17 22:53:46 -04:00
void AC_PosControl : : rate_to_accel_xy ( float dt )
2013-12-28 07:15:29 -04:00
{
2014-01-17 22:53:46 -04:00
const Vector3f & vel_curr = _inav . get_velocity ( ) ; // current velocity in cm/s
2013-12-28 07:15:29 -04:00
float accel_total ; // total acceleration in cm/s/s
2014-01-17 22:53:46 -04:00
// reset accel limit flag
_limit . accel_xy = false ;
2013-12-28 07:15:29 -04:00
// reset last velocity if this controller has just been engaged or dt is zero
2014-01-17 22:53:46 -04:00
if ( dt = = 0.0 ) {
_accel_target . x = 0 ;
_accel_target . y = 0 ;
2013-12-28 07:15:29 -04:00
} else {
// feed forward desired acceleration calculation
2014-01-17 22:53:46 -04:00
_accel_target . x = ( _vel_target . x - _vel_last . x ) / dt ;
_accel_target . y = ( _vel_target . y - _vel_last . y ) / dt ;
2013-12-28 07:15:29 -04:00
}
// store this iteration's velocities for the next iteration
2014-01-17 22:53:46 -04:00
_vel_last . x = _vel_target . x ;
_vel_last . y = _vel_target . y ;
2013-12-28 07:15:29 -04:00
// calculate velocity error
2014-01-17 22:53:46 -04:00
_vel_error . x = _vel_target . x - vel_curr . x ;
_vel_error . y = _vel_target . y - vel_curr . y ;
2013-12-28 07:15:29 -04:00
2014-01-17 22:53:46 -04:00
// combine feed foward accel with PID output from velocity error
// To-Do: check accel limit flag before adding I term
_accel_target . x + = _pid_rate_lat . get_pid ( _vel_error . x , dt ) ;
_accel_target . y + = _pid_rate_lon . get_pid ( _vel_error . y , dt ) ;
2013-12-28 07:15:29 -04:00
// scale desired acceleration if it's beyond acceptable limit
2014-01-17 22:53:46 -04:00
// To-Do: move this check down to the accel_to_lean_angle method?
accel_total = safe_sqrt ( _accel_target . x * _accel_target . x + _accel_target . y * _accel_target . y ) ;
if ( accel_total > POSCONTROL_ACCEL_XY_MAX ) {
_accel_target . x = POSCONTROL_ACCEL_XY_MAX * _accel_target . x / accel_total ;
_accel_target . y = POSCONTROL_ACCEL_XY_MAX * _accel_target . y / accel_total ;
_limit . accel_xy = true ; // unused
2013-12-28 07:15:29 -04:00
}
}
2014-01-17 22:53:46 -04:00
/// accel_to_lean_angles - horizontal desired acceleration to lean angles
2013-12-28 07:15:29 -04:00
/// converts desired accelerations provided in lat/lon frame to roll/pitch angles
2014-01-17 22:53:46 -04:00
void AC_PosControl : : accel_to_lean_angles ( )
2013-12-28 07:15:29 -04:00
{
2014-01-17 22:53:46 -04:00
float accel_right , accel_forward ;
float lean_angle_max = _attitude_control . lean_angle_max ( ) ;
2013-12-28 07:15:29 -04:00
// To-Do: add 1hz filter to accel_lat, accel_lon
// rotate accelerations into body forward-right frame
2014-01-17 22:53:46 -04:00
accel_forward = _accel_target . x * _cos_yaw + _accel_target . y * _sin_yaw ;
accel_right = - _accel_target . x * _sin_yaw + _accel_target . y * _cos_yaw ;
2013-12-28 07:15:29 -04:00
// update angle targets that will be passed to stabilize controller
2014-01-17 22:53:46 -04:00
_roll_target = constrain_float ( fast_atan ( accel_right * _cos_pitch / ( GRAVITY_MSS * 100 ) ) * ( 18000 / M_PI ) , - lean_angle_max , lean_angle_max ) ;
//_pitch_target = constrain_float(fast_atan(-accel_forward/(GRAVITY_MSS * 100))*(18000/M_PI),-lean_angle_max, lean_angle_max);
// To-Do: uncomment above after weird compiler errors disappears
2013-12-28 07:15:29 -04:00
}
2014-01-17 22:53:46 -04:00
/// reset_I_xy - clears I terms from loiter PID controller
void AC_PosControl : : reset_I_xy ( )
2013-12-28 07:15:29 -04:00
{
2014-01-17 22:53:46 -04:00
_pi_pos_lon . reset_I ( ) ;
_pi_pos_lat . reset_I ( ) ;
_pid_rate_lon . reset_I ( ) ;
_pid_rate_lat . reset_I ( ) ;
// set last velocity to current velocity
_vel_last = _inav . get_velocity ( ) ;
2013-12-28 07:15:29 -04:00
}
2014-01-17 22:53:46 -04:00
/// calc_leash_length - calculates the horizontal leash length given a maximum speed, acceleration and position kP gain
float AC_PosControl : : calc_leash_length ( float speed_cms , float accel_cms , float kP ) const
2013-12-28 07:15:29 -04:00
{
2014-01-17 22:53:46 -04:00
float leash_length ;
2013-12-28 07:15:29 -04:00
2014-01-17 22:53:46 -04:00
// sanity check acceleration and avoid divide by zero
if ( accel_cms < = 0.0f ) {
accel_cms = POSCONTROL_ACCELERATION_MIN ;
}
// avoid divide by zero
if ( kP < = 0.0f ) {
return POSCONTROL_LEASH_LENGTH_MIN ;
}
// calculate leash length
if ( speed_cms < = accel_cms / kP ) {
// linear leash length based on speed close in
leash_length = speed_cms / kP ;
} else {
// leash length grows at sqrt of speed further out
leash_length = ( accel_cms / ( 2.0f * kP * kP ) ) + ( speed_cms * speed_cms / ( 2.0f * accel_cms ) ) ;
}
// ensure leash is at least 1m long
if ( leash_length < POSCONTROL_LEASH_LENGTH_MIN ) {
leash_length = POSCONTROL_LEASH_LENGTH_MIN ;
}
return leash_length ;
2013-12-28 07:15:29 -04:00
}