2015-09-21 02:18:49 -03:00
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
24 state EKF based on https : //github.com/priseborough/InertialNav
Converted from Matlab to C + + by Paul Riseborough
EKF Tuning parameters refactored by Tom Cauchois
This program is free software : you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .
You should have received a copy of the GNU General Public License
along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
# ifndef AP_NavEKF2_Tuning
# define AP_NavEKF2_Tuning
# include <AP_Math/AP_Math.h>
# include <AP_Param/AP_Param.h>
# include <GCS_MAVLink/GCS_MAVLink.h>
2015-09-22 21:27:56 -03:00
# include <AP_NavEKF/AP_Nav_Common.h>
# include <AP_Baro/AP_Baro.h>
# include <AP_Airspeed/AP_Airspeed.h>
# include <AP_Compass/AP_Compass.h>
# include <AP_NavEKF/AP_Nav_Common.h>
# include <AP_RangeFinder/AP_RangeFinder.h>
class NavEKF2_core ;
class AP_AHRS ;
2015-09-21 02:18:49 -03:00
class NavEKF2
{
public :
2015-09-22 21:27:56 -03:00
friend class NavEKF2_core ;
2015-09-21 02:18:49 -03:00
static const struct AP_Param : : GroupInfo var_info [ ] ;
2015-09-22 21:27:56 -03:00
NavEKF2 ( const AP_AHRS * ahrs , AP_Baro & baro , const RangeFinder & rng ) ;
2015-09-22 23:09:26 -03:00
// allow logging to determine if enabled
2015-09-23 04:29:28 -03:00
bool enabled ( void ) const {
return _enable ! = 0 ;
}
2015-09-22 21:27:56 -03:00
// Initialise the filter
bool InitialiseFilter ( void ) ;
// Update Filter States - this should be called whenever new IMU data is available
void UpdateFilter ( void ) ;
// Check basic filter health metrics and return a consolidated health status
bool healthy ( void ) const ;
// Return the last calculated NED position relative to the reference point (m).
// If a calculated solution is not available, use the best available data and return false
// If false returned, do not use for flight control
bool getPosNED ( Vector3f & pos ) const ;
// return NED velocity in m/s
void getVelNED ( Vector3f & vel ) const ;
// This returns the specific forces in the NED frame
void getAccelNED ( Vector3f & accelNED ) const ;
// return body axis gyro bias estimates in rad/sec
void getGyroBias ( Vector3f & gyroBias ) const ;
2015-09-23 23:05:42 -03:00
// return body axis gyro scale factor error as a percentage
void getGyroScaleErrorPercentage ( Vector3f & gyroScale ) const ;
2015-09-22 21:27:56 -03:00
// return tilt error convergence metric
void getTiltError ( float & ang ) const ;
// reset body axis gyro bias estimates
void resetGyroBias ( void ) ;
// Resets the baro so that it reads zero at the current height
// Resets the EKF height to zero
// Adjusts the EKf origin height so that the EKF height + origin height is the same as before
// Returns true if the height datum reset has been performed
// If using a range finder for height no reset is performed and it returns false
bool resetHeightDatum ( void ) ;
// Commands the EKF to not use GPS.
// This command must be sent prior to arming as it will only be actioned when the filter is in static mode
// This command is forgotten by the EKF each time it goes back into static mode (eg the vehicle disarms)
// Returns 0 if command rejected
// Returns 1 if attitude, vertical velocity and vertical position will be provided
// Returns 2 if attitude, 3D-velocity, vertical position and relative horizontal position will be provided
uint8_t setInhibitGPS ( void ) ;
// return the horizontal speed limit in m/s set by optical flow sensor limits
// return the scale factor to be applied to navigation velocity gains to compensate for increase in velocity noise with height when using optical flow
void getEkfControlLimits ( float & ekfGndSpdLimit , float & ekfNavVelGainScaler ) const ;
2015-09-23 23:05:42 -03:00
// return the Z-accel bias estimate in m/s^2
void getAccelZBias ( float & zbias ) const ;
2015-09-22 21:27:56 -03:00
// return the NED wind speed estimates in m/s (positive is air moving in the direction of the axis)
void getWind ( Vector3f & wind ) const ;
// return earth magnetic field estimates in measurement units / 1000
void getMagNED ( Vector3f & magNED ) const ;
// return body magnetic field estimates in measurement units / 1000
void getMagXYZ ( Vector3f & magXYZ ) const ;
// Return estimated magnetometer offsets
// Return true if magnetometer offsets are valid
bool getMagOffsets ( Vector3f & magOffsets ) const ;
// Return the last calculated latitude, longitude and height in WGS-84
// If a calculated location isn't available, return a raw GPS measurement
// The status will return true if a calculation or raw measurement is available
// The getFilterStatus() function provides a more detailed description of data health and must be checked if data is to be used for flight control
bool getLLH ( struct Location & loc ) const ;
// return the latitude and longitude and height used to set the NED origin
// All NED positions calculated by the filter are relative to this location
// Returns false if the origin has not been set
bool getOriginLLH ( struct Location & loc ) const ;
// set the latitude and longitude and height used to set the NED origin
// All NED positions calcualted by the filter will be relative to this location
// The origin cannot be set if the filter is in a flight mode (eg vehicle armed)
// Returns false if the filter has rejected the attempt to set the origin
bool setOriginLLH ( struct Location & loc ) ;
// return estimated height above ground level
// return false if ground height is not being estimated.
bool getHAGL ( float & HAGL ) const ;
// return the Euler roll, pitch and yaw angle in radians
void getEulerAngles ( Vector3f & eulers ) const ;
// return the transformation matrix from XYZ (body) to NED axes
void getRotationBodyToNED ( Matrix3f & mat ) const ;
// return the quaternions defining the rotation from NED to XYZ (body) axes
void getQuaternion ( Quaternion & quat ) const ;
// return the innovations for the NED Pos, NED Vel, XYZ Mag and Vtas measurements
void getInnovations ( Vector3f & velInnov , Vector3f & posInnov , Vector3f & magInnov , float & tasInnov , float & yawInnov ) const ;
// return the innovation consistency test ratios for the velocity, position, magnetometer and true airspeed measurements
void getVariances ( float & velVar , float & posVar , float & hgtVar , Vector3f & magVar , float & tasVar , Vector2f & offset ) const ;
// should we use the compass? This is public so it can be used for
// reporting via ahrs.use_compass()
bool use_compass ( void ) const ;
// write the raw optical flow measurements
// rawFlowQuality is a measured of quality between 0 and 255, with 255 being the best quality
// rawFlowRates are the optical flow rates in rad/sec about the X and Y sensor axes.
// rawGyroRates are the sensor rotation rates in rad/sec measured by the sensors internal gyro
// The sign convention is that a RH physical rotation of the sensor about an axis produces both a positive flow and gyro rate
// msecFlowMeas is the scheduler time in msec when the optical flow data was received from the sensor.
void writeOptFlowMeas ( uint8_t & rawFlowQuality , Vector2f & rawFlowRates , Vector2f & rawGyroRates , uint32_t & msecFlowMeas ) ;
// return data for debugging optical flow fusion
void getFlowDebug ( float & varFlow , float & gndOffset , float & flowInnovX , float & flowInnovY , float & auxInnov , float & HAGL , float & rngInnov , float & range , float & gndOffsetErr ) const ;
// called by vehicle code to specify that a takeoff is happening
// causes the EKF to compensate for expected barometer errors due to ground effect
void setTakeoffExpected ( bool val ) ;
// called by vehicle code to specify that a touchdown is expected to happen
// causes the EKF to compensate for expected barometer errors due to ground effect
void setTouchdownExpected ( bool val ) ;
/*
return the filter fault status as a bitmasked integer
0 = quaternions are NaN
1 = velocities are NaN
2 = badly conditioned X magnetometer fusion
3 = badly conditioned Y magnetometer fusion
5 = badly conditioned Z magnetometer fusion
6 = badly conditioned airspeed fusion
7 = badly conditioned synthetic sideslip fusion
7 = filter is not initialised
*/
void getFilterFaults ( uint8_t & faults ) const ;
/*
return filter timeout status as a bitmasked integer
0 = position measurement timeout
1 = velocity measurement timeout
2 = height measurement timeout
3 = magnetometer measurement timeout
5 = unassigned
6 = unassigned
7 = unassigned
7 = unassigned
*/
void getFilterTimeouts ( uint8_t & timeouts ) const ;
2015-10-07 21:38:26 -03:00
/*
return filter gps quality check status
*/
void getFilterGpsStatus ( nav_gps_status & faults ) const ;
2015-09-22 21:27:56 -03:00
/*
return filter status flags
*/
void getFilterStatus ( nav_filter_status & status ) const ;
// send an EKF_STATUS_REPORT message to GCS
void send_status_report ( mavlink_channel_t chan ) ;
// provides the height limit to be observed by the control loops
// returns false if no height limiting is required
// this is needed to ensure the vehicle does not fly too high when using optical flow navigation
bool getHeightControlLimit ( float & height ) const ;
// return the amount of yaw angle change due to the last yaw angle reset in radians
2015-09-24 03:50:14 -03:00
// returns the time of the last yaw angle reset or 0 if no reset has ever occurred
uint32_t getLastYawResetAngle ( float & yawAng ) ;
2015-09-23 04:29:28 -03:00
2015-09-23 05:55:12 -03:00
// allow the enable flag to be set by Replay
void set_enable ( bool enable ) { _enable . set ( enable ) ; }
2015-09-22 21:27:56 -03:00
private :
NavEKF2_core * core = nullptr ;
const AP_AHRS * _ahrs ;
AP_Baro & _baro ;
const RangeFinder & _rng ;
2015-09-21 02:18:49 -03:00
// EKF Mavlink Tuneable Parameters
2015-09-22 20:57:02 -03:00
AP_Int8 _enable ; // zero to disable EKF2
2015-09-21 02:18:49 -03:00
AP_Float _gpsHorizVelNoise ; // GPS horizontal velocity measurement noise : m/s
AP_Float _gpsVertVelNoise ; // GPS vertical velocity measurement noise : m/s
AP_Float _gpsHorizPosNoise ; // GPS horizontal position measurement noise m
AP_Float _baroAltNoise ; // Baro height measurement noise : m^2
AP_Float _magNoise ; // magnetometer measurement noise : gauss
AP_Float _easNoise ; // equivalent airspeed measurement noise : m/s
AP_Float _windVelProcessNoise ; // wind velocity state process noise : m/s^2
AP_Float _wndVarHgtRateScale ; // scale factor applied to wind process noise due to height rate
AP_Float _magProcessNoise ; // magnetic field process noise : gauss/sec
AP_Float _gyrNoise ; // gyro process noise : rad/s
AP_Float _accNoise ; // accelerometer process noise : m/s^2
AP_Float _gyroBiasProcessNoise ; // gyro bias state process noise : rad/s
AP_Float _accelBiasProcessNoise ; // accel bias state process noise : m/s^2
2015-09-23 20:38:54 -03:00
AP_Int16 _gpsDelay_ms ; // effective average delay of GPS measurements relative to inertial measurement (msec)
AP_Int16 _hgtDelay_ms ; // effective average delay of Height measurements relative to inertial measurements (msec)
2015-09-21 02:18:49 -03:00
AP_Int8 _fusionModeGPS ; // 0 = use 3D velocity, 1 = use 2D velocity, 2 = use no velocity
AP_Int8 _gpsVelInnovGate ; // Number of standard deviations applied to GPS velocity innovation consistency check
AP_Int8 _gpsPosInnovGate ; // Number of standard deviations applied to GPS position innovation consistency check
AP_Int8 _hgtInnovGate ; // Number of standard deviations applied to height innovation consistency check
AP_Int8 _magInnovGate ; // Number of standard deviations applied to magnetometer innovation consistency check
AP_Int8 _tasInnovGate ; // Number of standard deviations applied to true airspeed innovation consistency check
AP_Int8 _magCal ; // Sets activation condition for in-flight magnetometer calibration
AP_Int8 _gpsGlitchRadiusMax ; // Maximum allowed discrepancy between inertial and GPS Horizontal position before GPS glitch is declared : m
AP_Float _flowNoise ; // optical flow rate measurement noise
AP_Int8 _flowInnovGate ; // Number of standard deviations applied to optical flow innovation consistency check
2015-09-23 09:19:48 -03:00
AP_Int8 _flowDelay_ms ; // effective average delay of optical flow measurements rel to IMU (msec)
2015-09-21 02:18:49 -03:00
AP_Int8 _rngInnovGate ; // Number of standard deviations applied to range finder innovation consistency check
AP_Float _maxFlowRate ; // Maximum flow rate magnitude that will be accepted by the filter
AP_Int8 _altSource ; // Primary alt source during optical flow navigation. 0 = use Baro, 1 = use range finder.
AP_Float _gyroScaleProcessNoise ; // gyro scale factor state process noise : 1/s
2015-09-23 20:38:54 -03:00
AP_Float _rngNoise ; // Range finder noise : m
2015-09-21 02:18:49 -03:00
// Tuning parameters
const float gpsNEVelVarAccScale ; // Scale factor applied to NE velocity measurement variance due to manoeuvre acceleration
const float gpsDVelVarAccScale ; // Scale factor applied to vertical velocity measurement variance due to manoeuvre acceleration
const float gpsPosVarAccScale ; // Scale factor applied to horizontal position measurement variance due to manoeuvre acceleration
2015-09-23 09:19:48 -03:00
const uint16_t magDelay_ms ; // Magnetometer measurement delay (msec)
const uint16_t tasDelay_ms ; // Airspeed measurement delay (msec)
const uint16_t gpsRetryTimeUseTAS_ms ; // GPS retry time with airspeed measurements (msec)
const uint16_t gpsRetryTimeNoTAS_ms ; // GPS retry time without airspeed measurements (msec)
const uint16_t gpsFailTimeWithFlow_ms ; // If we have no GPs for longer than this and we have optical flow, then we will switch across to using optical flow (msec)
const uint16_t hgtRetryTimeMode0_ms ; // Height retry time with vertical velocity measurement (msec)
const uint16_t hgtRetryTimeMode12_ms ; // Height retry time without vertical velocity measurement (msec)
const uint16_t tasRetryTime_ms ; // True airspeed timeout and retry interval (msec)
2015-09-21 02:18:49 -03:00
const uint32_t magFailTimeLimit_ms ; // number of msec before a magnetometer failing innovation consistency checks is declared failed (msec)
const float magVarRateScale ; // scale factor applied to magnetometer variance due to angular rate
const float gyroBiasNoiseScaler ; // scale factor applied to gyro bias state process noise when on ground
2015-09-23 20:38:54 -03:00
const uint16_t hgtAvg_ms ; // average number of msec between height measurements
const uint16_t betaAvg_ms ; // average number of msec between synthetic sideslip measurements
2015-09-21 02:18:49 -03:00
const float covTimeStepMax ; // maximum time (sec) between covariance prediction updates
const float covDelAngMax ; // maximum delta angle between covariance prediction updates
const float DCM33FlowMin ; // If Tbn(3,3) is less than this number, optical flow measurements will not be fused as tilt is too high.
const float fScaleFactorPnoise ; // Process noise added to focal length scale factor state variance at each time step
const uint8_t flowTimeDeltaAvg_ms ; // average interval between optical flow measurements (msec)
const uint32_t flowIntervalMax_ms ; // maximum allowable time between flow fusion events
2015-09-23 20:38:54 -03:00
const uint16_t gndEffectTimeout_ms ; // time in msec that ground effect mode is active after being activated
2015-09-21 02:18:49 -03:00
const float gndEffectBaroScaler ; // scaler applied to the barometer observation variance when ground effect mode is active
2015-09-23 20:38:54 -03:00
const uint8_t gndGradientSigma ; // RMS terrain gradient percentage assumed by the terrain height estimation
2015-09-21 02:18:49 -03:00
} ;
# endif //AP_NavEKF2