Ardupilot2/libraries/AP_Scripting/examples/Aerobatics/Trajectory/plane_aerobatics.lua

1769 lines
56 KiB
Lua
Raw Normal View History

2022-10-26 00:48:24 -03:00
--[[
trajectory tracking aerobatic control
See README.md for usage
Written by Matthew Hampsey, Andy Palmer and Andrew Tridgell, with controller
assistance from Paul Riseborough, testing by Henry Wurzburg
]]--
-- setup param block for aerobatics, reserving 30 params beginning with AERO_
local PARAM_TABLE_KEY = 70
local PARAM_TABLE_PREFIX = 'AEROM_'
assert(param:add_table(PARAM_TABLE_KEY, "AEROM_", 30), 'could not add param table')
-- add a parameter and bind it to a variable
function bind_add_param(name, idx, default_value)
assert(param:add_param(PARAM_TABLE_KEY, idx, name, default_value), string.format('could not add param %s', name))
return Parameter(PARAM_TABLE_PREFIX .. name)
end
HGT_P = bind_add_param('HGT_P', 1, 1)
HGT_I = bind_add_param('HGT_I', 2, 2)
HGT_KE_BIAS = bind_add_param('HGT_KE_ADD', 3, 20) -- unused
THR_PIT_FF = bind_add_param('THR_PIT_FF', 4, 80)
SPD_P = bind_add_param('SPD_P', 5, 5)
SPD_I = bind_add_param('SPD_I', 6, 25)
ERR_CORR_TC = bind_add_param('ERR_COR_TC', 7, 3)
ROLL_CORR_TC = bind_add_param('ROL_COR_TC', 8, 0.25)
AUTO_MIS = bind_add_param('AUTO_MIS', 9, 0)
AUTO_RAD = bind_add_param('AUTO_RAD', 10, 40)
TIME_CORR_P = bind_add_param('TIME_COR_P', 11, 1.0)
ERR_CORR_P = bind_add_param('ERR_COR_P', 12, 2.0)
ERR_CORR_D = bind_add_param('ERR_COR_D', 13, 2.8)
AEROM_ENTRY_RATE = bind_add_param('ENTRY_RATE', 14, 60)
AEROM_THR_LKAHD = bind_add_param('THR_LKAHD', 15, 1)
AEROM_DEBUG = bind_add_param('DEBUG', 16, 0)
--[[
Aerobatic tricks on a switch support - allows for tricks to be initiated outside AUTO mode
--]]
-- 2nd param table for tricks on a switch
local PARAM_TABLE_KEY2 = 71
local PARAM_TABLE_PREFIX2 = "TRIK"
assert(param:add_table(PARAM_TABLE_KEY2, PARAM_TABLE_PREFIX2, 63), 'could not add param table2')
-- add a parameter and bind it to a variable in table2
function bind_add_param2(name, idx, default_value)
assert(param:add_param(PARAM_TABLE_KEY2, idx, name, default_value), string.format('could not add param %s', name))
return Parameter(PARAM_TABLE_PREFIX2 .. name)
end
local TRIK_ENABLE = bind_add_param2("_ENABLE", 1, 0)
local TRICKS = nil
local TRIK_SEL_FN = nil
local TRIK_ACT_FN = nil
local TRIK_COUNT = nil
local function TrickDef(id, arg1, arg2, arg3, arg4)
local self = {}
self.id = id
self.args = {arg1, arg2, arg3, arg4}
return self
end
-- constrain a value between limits
function constrain(v, vmin, vmax)
if v < vmin then
v = vmin
end
if v > vmax then
v = vmax
end
return v
end
if TRIK_ENABLE:get() > 0 then
TRIK_SEL_FN = bind_add_param2("_SEL_FN", 2, 301)
TRIK_ACT_FN = bind_add_param2("_ACT_FN", 3, 300)
TRIK_COUNT = bind_add_param2("_COUNT", 4, 3)
TRICKS = {}
-- setup parameters for tricks
local count = math.floor(constrain(TRIK_COUNT:get(),1,11))
for i = 1, count do
local k = 5*i
local prefix = string.format("%u", i)
TRICKS[i] = TrickDef(bind_add_param2(prefix .. "_ID", k+0, i),
bind_add_param2(prefix .. "_ARG1", k+1, 30),
bind_add_param2(prefix .. "_ARG2", k+2, 0),
bind_add_param2(prefix .. "_ARG3", k+3, 0),
bind_add_param2(prefix .. "_ARG4", k+4, 0))
end
gcs:send_text(0, string.format("Enabled %u aerobatic tricks", TRIK_COUNT:get()))
end
local NAV_TAKEOFF = 22
local NAV_WAYPOINT = 16
local NAV_SCRIPT_TIME = 42702
local MODE_AUTO = 10
local LOOP_RATE = 20
local DO_JUMP = 177
local k_throttle = 70
local NAME_FLOAT_RATE = 2
local TRIM_ARSPD_CM = Parameter("TRIM_ARSPD_CM")
local last_id = 0
local current_task = nil
local last_named_float_t = 0
local path_var = {}
function wrap_360(angle)
local res = math.fmod(angle, 360.0)
if res < 0 then
res = res + 360.0
end
return res
end
function wrap_180(angle)
local res = wrap_360(angle)
if res > 180 then
res = res - 360
end
return res
end
function wrap_pi(angle)
local angle_deg = math.deg(angle)
local angle_wrapped = wrap_180(angle_deg)
return math.rad(angle_wrapped)
end
function wrap_2pi(angle)
local angle_deg = math.deg(angle)
local angle_wrapped = wrap_360(angle_deg)
return math.rad(angle_wrapped)
end
-- a PI controller implemented as a Lua object
local function PI_controller(kP,kI,iMax)
-- the new instance. You can put public variables inside this self
-- declaration if you want to
local self = {}
-- private fields as locals
local _kP = kP or 0.0
local _kI = kI or 0.0
local _kD = kD or 0.0
local _iMax = iMax
local _last_t = nil
local _I = 0
local _P = 0
local _total = 0
local _counter = 0
local _target = 0
local _current = 0
-- update the controller.
function self.update(target, current)
local now = millis():tofloat() * 0.001
if not _last_t then
_last_t = now
end
local dt = now - _last_t
_last_t = now
local err = target - current
_counter = _counter + 1
local P = _kP * err
_I = _I + _kI * err * dt
if _iMax then
_I = constrain(_I, -_iMax, iMax)
end
local I = _I
local ret = P + I
_target = target
_current = current
_P = P
_total = ret
return ret
end
-- reset integrator to an initial value
function self.reset(integrator)
_I = integrator
end
function self.set_I(I)
_kI = I
end
function self.set_P(P)
_kP = P
end
function self.set_Imax(Imax)
_iMax = Imax
end
-- log the controller internals
function self.log(name, add_total)
-- allow for an external addition to total
logger.write(name,'Targ,Curr,P,I,Total,Add','ffffff',_target,_current,_P,_I,_total,add_total)
end
-- return the instance
return self
end
local function speed_controller(kP_param,kI_param, kFF_pitch_param, Imax)
local self = {}
local kFF_pitch = kFF_pitch_param
local PI = PI_controller(kP_param:get(), kI_param:get(), Imax)
function self.update(target, anticipated_pitch_rad)
local current_speed = ahrs:get_velocity_NED():length()
local throttle = PI.update(target, current_speed)
local FF = math.sin(anticipated_pitch_rad)*kFF_pitch:get()
PI.log("AESP", FF)
return throttle + FF
end
function self.reset()
PI.reset(0)
local temp_throttle = self.update(ahrs:get_velocity_NED():length(), 0)
local current_throttle = SRV_Channels:get_output_scaled(k_throttle)
PI.reset(current_throttle-temp_throttle)
end
return self
end
local speed_PI = speed_controller(SPD_P, SPD_I, THR_PIT_FF, 100.0)
function sgn(x)
local eps = 0.000001
if (x > eps) then
return 1.0
elseif x < eps then
return -1.0
else
return 0.0
end
end
function get_wp_location(i)
local m = mission:get_item(i)
local loc = Location()
loc:lat(m:x())
loc:lng(m:y())
loc:relative_alt(true)
loc:terrain_alt(false)
loc:origin_alt(false)
loc:alt(math.floor(m:z()*100))
return loc
end
function resolve_jump(i)
local m = mission:get_item(i)
while m:command() == DO_JUMP do
i = math.floor(m:param1())
m = mission:get_item(i)
end
return i
end
--[[
Wrapper to construct a Vector3f{x, y, z} from (x, y, z)
--]]
function makeVector3f(x, y, z)
local vec = Vector3f()
vec:x(x)
vec:y(y)
vec:z(z)
return vec
end
--[[
trajectory building blocks. We have two types of building blocks,
roll blocks and path blocks. These are combined to give composite paths
--]]
--[[
all roll components inherit from RollComponent
--]]
function RollComponent()
local self = {}
self.name = nil
function self.get_roll(t)
return 0
end
return self
end
--[[
roll component that goes through a fixed total angle at a fixed roll rate
--]]
function roll_angle(_angle)
local self = RollComponent()
self.name = "roll_angle"
local angle = _angle
function self.get_roll(t)
return angle * t
end
return self
end
--[[
roll component that banks to _angle over AEROM_ENTRY_RATE
degrees/s, then holds that angle, then banks back to zero at
AEROM_ENTRY_RATE degrees/s
--]]
function roll_angle_entry_exit(_angle)
local self = RollComponent()
self.name = "roll_angle_entry_exit"
local angle = _angle
local entry_s = math.abs(angle) / AEROM_ENTRY_RATE:get()
function self.get_roll(t, time_s)
local entry_t = entry_s / time_s
if entry_t > 0.5 then
entry_t = 0.5
end
if t <= 0 then
return 0
end
if t < entry_t then
return angle * t / entry_t
end
if t < 1.0 - entry_t then
return angle
end
if angle == 0 or t >= 1.0 then
return 0
end
return (1.0 - ((t - (1.0 - entry_t)) / entry_t)) * angle
end
return self
end
--[[
roll component that banks to _angle over AEROM_ENTRY_RATE
degrees/s, then holds that angle
--]]
function roll_angle_entry(_angle)
local self = RollComponent()
self.name = "roll_angle_entry"
local angle = _angle
local entry_s = math.abs(angle) / AEROM_ENTRY_RATE:get()
function self.get_roll(t, time_s)
local entry_t = entry_s / time_s
if entry_t > 0.5 then
entry_t = 0.5
end
if t < entry_t then
return angle * t / entry_t
end
return angle
end
return self
end
--[[
roll component that holds angle until the end of the subpath, then
rolls back to 0 at the AEROM_ENTRY_RATE
--]]
function roll_angle_exit(_angle)
local self = {}
self.name = "roll_angle_exit"
local angle = _angle
local entry_s = math.abs(angle) / AEROM_ENTRY_RATE:get()
function self.get_roll(t, time_s)
local entry_t = entry_s / time_s
if t < 1.0 - entry_t then
return 0
end
if angle == 0 then
return 0
end
return ((t - (1.0 - entry_t)) / entry_t) * angle
end
return self
end
--[[
all path components inherit from PathComponent
--]]
function PathComponent()
local self = {}
self.name = nil
function self.get_pos(t)
return makeVector3f(0, 0, 0)
end
function self.get_length()
return 0
end
function self.get_final_orientation()
return Quaternion()
end
return self
end
--[[
path component that does a straight horizontal line
--]]
function path_straight(_distance)
local self = PathComponent()
self.name = "path_straight"
local distance = _distance
function self.get_pos(t)
return makeVector3f(distance*t, 0, 0)
end
function self.get_length()
return distance
end
return self
end
--[[
path component that does a vertical arc over a given angle
--]]
function path_vertical_arc(_radius, _angle)
local self = PathComponent()
self.name = "path_vertical_arc"
local radius = _radius
local angle = _angle
function self.get_pos(t)
local t2ang = wrap_2pi(t * math.rad(angle))
return makeVector3f(math.abs(radius)*math.sin(t2ang), 0, -radius*(1.0 - math.cos(t2ang)))
end
function self.get_length()
return math.abs(radius) * 2 * math.pi * math.abs(angle) / 360.0
end
function self.get_final_orientation()
local q = Quaternion()
q:from_axis_angle(makeVector3f(0,1,0), sgn(radius)*math.rad(wrap_180(angle)))
return q
end
return self
end
--[[
integrate a function, assuming fn takes a time t from 0 to 1
--]]
function integrate_length(fn)
local total = 0.0
local p = fn(0)
for i = 1, 100 do
local t = i*0.01
local p2 = fn(t)
local dv = p2 - p
total = total + dv:length()
p = p2
end
return total
end
--[[
path component that does a horizontal arc over a given angle
--]]
function path_horizontal_arc(_radius, _angle, _height_gain)
local self = PathComponent()
self.name = "path_horizontal_arc"
local radius = _radius
local angle = _angle
local height_gain = _height_gain
if height_gain == nil then
height_gain = 0
end
function self.get_pos(t)
local t2ang = t * math.rad(angle)
return makeVector3f(math.abs(radius)*math.sin(t2ang), radius*(1.0 - math.cos(t2ang)), -height_gain*t)
end
function self.get_length()
local circumference = 2 * math.pi * math.abs(radius)
local full_circle_height_gain = height_gain * 360.0 / math.abs(angle)
local helix_length = math.sqrt(full_circle_height_gain*full_circle_height_gain + circumference*circumference)
return helix_length * math.abs(angle) / 360.0
end
function self.get_final_orientation()
local q = Quaternion()
q:from_axis_angle(makeVector3f(0,0,1), sgn(radius)*math.rad(angle))
return q
end
return self
end
--[[
a Path has the methods of both RollComponent and
PathComponent allowing for a complete description of a subpath
--]]
function Path(_path_component, _roll_component)
local self = {}
self.name = string.format("%s|%s", _path_component.name, _roll_component.name)
local path_component = _path_component
local roll_component = _roll_component
function self.get_roll(t, time_s)
return wrap_180(roll_component.get_roll(t, time_s))
end
function self.get_pos(t)
return path_component.get_pos(t)
end
function self.get_speed(t)
return nil
end
function self.get_length()
return path_component.get_length()
end
function self.get_final_orientation()
return path_component.get_final_orientation()
end
return self
end
--[[
componse multiple sub-paths together to create a full trajectory
--]]
function path_composer(_name, _subpaths)
local self = {}
self.name = _name
local subpaths = _subpaths
local lengths = {}
local proportions = {}
local start_time = {}
local end_time = {}
local start_orientation = {}
local start_pos = {}
local start_angle = {}
local end_speed = {}
local start_speed = {}
local total_length = 0
local num_sub_paths = #subpaths
local last_subpath_t = { -1, 0, 0 }
local orientation = Quaternion()
local pos = makeVector3f(0,0,0)
local angle = 0
local speed = target_groundspeed()
local highest_i = 0
for i = 1, num_sub_paths do
lengths[i] = subpaths[i].get_length()
total_length = total_length + lengths[i]
-- accumulate orientation, position and angle
start_orientation[i] = orientation
start_pos[i] = pos
start_angle[i] = angle
local spos = subpaths[i].get_pos(1.0)
orientation:earth_to_body(spos)
pos = pos + spos
orientation = orientation * subpaths[i].get_final_orientation()
angle = angle + subpaths[i].get_roll(1.0, lengths[i]/speed)
start_speed[i] = speed
end_speed[i] = subpaths[i].get_speed(1.0)
if end_speed[i] == nil then
end_speed[i] = target_groundspeed()
end
speed = end_speed[i]
end
-- get our final orientation, including roll
local final_orientation = orientation
local q = Quaternion()
q:from_axis_angle(makeVector3f(1,0,0), math.rad(wrap_180(angle)))
final_orientation = q * final_orientation
-- work out the proportion of the total time we will spend in each sub path
local total_time = 0
for i = 1, num_sub_paths do
proportions[i] = lengths[i] / total_length
start_time[i] = total_time
end_time[i] = total_time + proportions[i]
total_time = total_time + proportions[i]
end
function self.get_subpath_t(t)
if last_subpath_t[1] == t then
-- use cached value
return last_subpath_t[2], last_subpath_t[3]
end
local i = 1
while t >= end_time[i] and i < num_sub_paths do
i = i + 1
end
local subpath_t = (t - start_time[i]) / proportions[i]
last_subpath_t = { t, subpath_t, i }
if i > highest_i and t < 1.0 and t > 0 then
highest_i = i
if AEROM_DEBUG:get() > 0 then
gcs:send_text(0, string.format("starting %s[%d] %s", self.name, i, subpaths[i].name))
end
end
return subpath_t, i
end
-- return position at time t
function self.get_pos(t)
local subpath_t, i = self.get_subpath_t(t)
pos = subpaths[i].get_pos(subpath_t)
start_orientation[i]:earth_to_body(pos)
return pos + start_pos[i]
end
-- return angle for the composed path at time t
function self.get_roll(t, time_s)
local subpath_t, i = self.get_subpath_t(t)
local speed = self.get_speed(t)
if speed == nil then
speed = target_groundspeed()
end
angle = subpaths[i].get_roll(subpath_t, lengths[i]/speed)
return angle + start_angle[i]
end
-- return speed for the composed path at time t
function self.get_speed(t)
local subpath_t, i = self.get_subpath_t(t)
return start_speed[i] + subpath_t * (end_speed[i] - start_speed[i])
end
function self.get_length()
return total_length
end
function self.get_final_orientation()
return final_orientation
end
return self
end
--[[
make a list of Path() objects from a list of PathComponent, RollComponent pairs
--]]
function make_paths(name, paths)
local p = {}
for i = 1, #paths do
p[i] = Path(paths[i][1], paths[i][2])
end
return path_composer(name, p)
end
--[[
composed trajectories, does as individual aerobatic maneuvers
--]]
function climbing_circle(radius, height, bank_angle, arg4)
return make_paths("climbing_circle", {
{ path_horizontal_arc(radius, 360, height), roll_angle_entry_exit(bank_angle) },
})
end
function loop(radius, bank_angle, num_loops, arg4)
if not num_loops then
num_loops = 1
end
return make_paths("loop", {
{ path_vertical_arc(radius, 360*num_loops), roll_angle_entry_exit(bank_angle) },
})
end
function straight_roll(length, num_rolls, arg3, arg4)
return make_paths("straight_roll", {
{ path_straight(length), roll_angle(num_rolls*360) },
})
end
function immelmann_turn(r, roll_rate, arg3, arg4)
local speed = target_groundspeed()
return make_paths("immelmann_turn", {
{ path_vertical_arc(r, 180), roll_angle(0) },
{ path_straight(speed*180.0/roll_rate), roll_angle(180) },
})
end
function humpty_bump(r, h, arg3, arg4)
assert(h >= 2*r)
return make_paths("humpty_bump", {
{ path_vertical_arc(r, 90), roll_angle(0) },
{ path_straight((h-2*r)/3), roll_angle(0) },
{ path_straight((h-2*r)/3), roll_angle(180) },
{ path_straight((h-2*r)/3), roll_angle(0) },
{ path_vertical_arc(-r, 180), roll_angle(0) },
{ path_straight(h-2*r), roll_angle(0) },
{ path_vertical_arc(-r, 90), roll_angle(0) },
{ path_straight(2*r), roll_angle(0) },
})
end
function split_s(r, roll_rate, arg3, arg4)
local speed = target_groundspeed()
return make_paths("split_s", {
{ path_straight(speed*180.0/roll_rate), roll_angle(180) },
{ path_vertical_arc(-r, 180), roll_angle(0) },
})
end
function upline_45(r, height_gain, arg3, arg4)
local h = (height_gain - 2*r*(1.0-math.cos(math.rad(45))))/math.sin(math.rad(45))
assert(h >= 0)
return make_paths("upline_45", {
{ path_vertical_arc(r, 45), roll_angle(0) },
{ path_straight(h), roll_angle(0) },
{ path_vertical_arc(-r, 45), roll_angle(0) },
})
end
function downline_45(r, height_loss, arg3, arg4)
local h = (height_loss - 2*r*(1.0-math.cos(math.rad(45))))/math.sin(math.rad(45))
assert(h >= 0)
return make_paths("downline_45", {
{ path_vertical_arc(-r, 45), roll_angle(0) },
{ path_straight(h), roll_angle(0) },
{ path_vertical_arc(r, 45), roll_angle(0) },
})
end
function rolling_circle(radius, num_rolls, arg3, arg4)
return make_paths("rolling_circle", {
{ path_horizontal_arc(radius, 360), roll_angle(360*num_rolls) },
})
end
function straight_flight(length, bank_angle, arg3, arg4)
return make_paths("straight_flight", {
{ path_straight(length), roll_angle_entry_exit(bank_angle) },
})
end
function scale_figure_eight(r, bank_angle, arg3, arg4)
return make_paths("scale_figure_eight", {
{ path_straight(r), roll_angle(0) },
{ path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle) },
{ path_horizontal_arc(-r, 360), roll_angle_entry_exit(-bank_angle) },
{ path_horizontal_arc(r, 270), roll_angle_entry_exit(bank_angle) },
{ path_straight(3*r), roll_angle(0) },
})
end
function figure_eight(r, bank_angle, arg3, arg4)
local rabs = math.abs(r)
return make_paths("figure_eight", {
{ path_straight(rabs*math.sqrt(2)), roll_angle(0) },
{ path_horizontal_arc(r, 225), roll_angle_entry_exit(bank_angle) },
{ path_straight(2*rabs), roll_angle(0) },
{ path_horizontal_arc(-r, 270), roll_angle_entry_exit(-bank_angle) },
{ path_straight(2*rabs), roll_angle(0) },
{ path_horizontal_arc(r, 45), roll_angle_entry_exit(bank_angle) },
})
end
--[[
stall turn is not really correct, as we don't fully stall. Needs to be
reworked
--]]
function stall_turn(radius, height, direction, min_speed)
local h = height - radius
assert(h >= 0)
return make_paths("stall_turn", {
{ path_vertical_arc(radius, 90), roll_angle(0) },
{ path_straight(h), roll_angle(0), min_speed },
{ path_horizontal_arc(5*direction, 180), roll_angle(0), min_speed },
{ path_straight(h), roll_angle(0) },
{ path_vertical_arc(radius, 90), roll_angle(0) },
})
end
function half_cuban_eight(r, arg2, arg3, arg4)
local rabs = math.abs(r)
return make_paths("half_cuban_eight", {
{ path_straight(2*rabs*math.sqrt(2)), roll_angle(0) },
{ path_vertical_arc(r, 225), roll_angle(0) },
{ path_straight(2*rabs/3), roll_angle(0) },
{ path_straight(2*rabs/3), roll_angle(180) },
{ path_straight(2*rabs/3), roll_angle(0) },
{ path_vertical_arc(-r, 45), roll_angle(0) },
})
end
function cuban_eight(r, arg2, arg3, arg4)
local rabs = math.abs(r)
return make_paths("cuban_eight", {
{ path_straight(rabs*math.sqrt(2)), roll_angle(0) },
{ path_vertical_arc(r, 225), roll_angle(0) },
{ path_straight(2*rabs/3), roll_angle(0) },
{ path_straight(2*rabs/3), roll_angle(180) },
{ path_straight(2*rabs/3), roll_angle(0) },
{ path_vertical_arc(-r, 270), roll_angle(0) },
{ path_straight(2*rabs/3), roll_angle(0) },
{ path_straight(2*rabs/3), roll_angle(180) },
{ path_straight(2*rabs/3), roll_angle(0) },
{ path_vertical_arc(r, 45), roll_angle(0) },
})
end
function half_reverse_cuban_eight(r, arg2, arg3, arg4)
local rabs = math.abs(r)
return make_paths("half_reverse_cuban_eight", {
{ path_vertical_arc(r, 45), roll_angle(0) },
{ path_straight(2*rabs/3), roll_angle(0) },
{ path_straight(2*rabs/3), roll_angle(180) },
{ path_straight(2*rabs/3), roll_angle(0) },
{ path_vertical_arc(-r, 225), roll_angle(0) },
})
end
function horizontal_rectangle(total_length, total_width, r, bank_angle)
local l = total_length - 2*r
local w = total_width - 2*r
return make_paths("horizontal_rectangle", {
{ path_straight(0.5*l), roll_angle(0) },
{ path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle)},
{ path_straight(w), roll_angle(0) },
{ path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle) },
{ path_straight(l), roll_angle(0) },
{ path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle) },
{ path_straight(w), roll_angle(0) },
{ path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle) },
{ path_straight(0.5*l), roll_angle(0) },
})
end
function vertical_aerobatic_box(total_length, total_width, r, bank_angle)
local l = total_length - 2*r
local w = total_width - 2*r
return make_paths("vertical_aerobatic_box", {
{ path_straight(0.5*l), roll_angle_entry(bank_angle) },
{ path_vertical_arc(r, 90), roll_angle(0) },
{ path_straight(w), roll_angle(0) },
{ path_vertical_arc(r, 90), roll_angle(0) },
{ path_straight(l), roll_angle(0) },
{ path_vertical_arc(r, 90), roll_angle(0) },
{ path_straight(w), roll_angle(0) },
{ path_vertical_arc(r, 90), roll_angle(0) },
{ path_straight(0.5*l), roll_angle_exit(-bank_angle) },
})
end
function two_point_roll(length, arg2, arg3, arg4)
return make_paths("two_point_roll", {
{ path_straight((length*3)/7), roll_angle(180) },
{ path_straight(length/7), roll_angle(0) },
{ path_straight((length*3)/7), roll_angle(180) },
})
end
function procedure_turn(radius, bank_angle, step_out, arg4)
local rabs = math.abs(radius)
return make_paths("procedure_turn", {
{ path_straight(rabs), roll_angle(0) },
{ path_horizontal_arc(radius, 90), roll_angle_entry_exit(bank_angle) },
{ path_straight(step_out), roll_angle(0) },
{ path_horizontal_arc(-radius, 270), roll_angle_entry_exit(-bank_angle) },
{ path_straight(4*rabs), roll_angle(0) },
})
end
function p23_1(radius, height, width, arg4) -- top hat
return make_paths("p23_1", {
{ path_vertical_arc(radius, 90), roll_angle(0) },
{ path_straight((height-2*radius)*2/9), roll_angle(0) },
{ path_straight((height-2*radius)*2/9), roll_angle(90) },
{ path_straight((height-2*radius)/9), roll_angle(0) },
{ path_straight((height-2*radius)*2/9), roll_angle(90) },
{ path_straight((height-2*radius)*2/9), roll_angle(0) },
{ path_vertical_arc(-radius, 90), roll_angle(0) },
{ path_straight((width-2*radius)/3), roll_angle(0) },
{ path_straight((width-2*radius)/3), roll_angle(180) },
{ path_straight((width-2*radius)/3), roll_angle(0) },
{ path_vertical_arc(-radius, 90), roll_angle(0) },
{ path_straight((height-2*radius)*2/9), roll_angle(0) },
{ path_straight((height-2*radius)*2/9), roll_angle(90) },
{ path_straight((height-2*radius)/9), roll_angle(0) },
{ path_straight((height-2*radius)*2/9), roll_angle(90) },
{ path_straight((height-2*radius)*2/9), roll_angle(0) },
{ path_vertical_arc(radius, 90), roll_angle(0) },
})
end
function p23_2(radius, height, arg3, arg4) -- half square
return make_paths("p23_2", {
{ path_vertical_arc(-radius, 90), roll_angle(0) },
{ path_straight((height-2*radius)/3), roll_angle(0) },
{ path_straight((height-2*radius)/3), roll_angle(180) },
{ path_straight((height-2*radius)/3), roll_angle(0) },
{ path_vertical_arc(-radius, 90), roll_angle(0) },
})
end
function p23_3(radius, height, arg3, arg4) -- humpty
return make_paths("p23_3", {
{ path_vertical_arc(radius, 90), roll_angle(0) },
{ path_straight((height-2*radius)/8), roll_angle(0) },
{ path_straight((height-2*radius)*6/8), roll_angle(360) },
{ path_straight((height-2*radius)/8), roll_angle(0) },
{ path_vertical_arc(radius, 180), roll_angle(0) },
{ path_straight((height-2*radius)/3), roll_angle(0) },
{ path_straight((height-2*radius)/3), roll_angle(180) },
{ path_straight((height-2*radius)/3), roll_angle(0) },
{ path_vertical_arc(radius, 90), roll_angle(0) },
})
end
function p23_4(radius, height, arg3, arg4) -- on corner
local l = ((height - (2 * radius)) * math.sin(math.rad(45)))
return make_paths("p23_4", {
{ path_vertical_arc(-radius, 45), roll_angle(0) },
{ path_straight(l/3), roll_angle(0) },
{ path_straight(l/3), roll_angle(180) },
{ path_straight(l/3), roll_angle(0) },
{ path_vertical_arc(-radius, 90), roll_angle(0) },
{ path_straight(l/3), roll_angle(0) },
{ path_straight(l/3), roll_angle(180) },
{ path_straight(l/3), roll_angle(0) },
{ path_vertical_arc(-radius, 45), roll_angle(0) },
})
end
function p23_5(radius, height_gain, arg3, arg4) -- 45 up - should be 1 1/2 snaps....
-- 1 1/2 rolls not working
local l = (height_gain - 2*radius*(1.0-math.cos(math.rad(45))))/math.sin(math.rad(45))
return make_paths("p23_5", {
{ path_vertical_arc(-radius, 45), roll_angle(0) },
{ path_straight(l/3), roll_angle(0) },
{ path_straight(l/3), roll_angle(540) },
{ path_straight(l/3), roll_angle(0) },
{ path_vertical_arc(radius, 45), roll_angle(0) },
})
end
function p23_6(radius, height_gain, arg3, arg4) -- 3 sided
local l = (height_gain - 2*radius) / ((2*math.sin(math.rad(45))) + 1)
return make_paths("p23_6", {
{ path_vertical_arc(-radius, 45), roll_angle(0) },
{ path_straight(l), roll_angle(0) },
{ path_vertical_arc(-radius, 45), roll_angle(0) },
{ path_straight(l), roll_angle(0) },
{ path_vertical_arc(-radius, 45), roll_angle(0) },
{ path_straight(l), roll_angle(0) },
{ path_vertical_arc(-radius, 45), roll_angle(0) },
})
end
--[[
NZ clubman schedule
--]]
function nz_clubman()
return path_composer("nz_clubman", {
straight_roll(20, 0),
procedure_turn(20, 45, 60),
straight_roll(150, 0),
half_reverse_cuban_eight(40),
straight_roll(150, 0),
cuban_eight(40),
straight_roll(80, 0),
half_reverse_cuban_eight(40),
straight_roll(140, 0),
half_reverse_cuban_eight(40),
straight_roll(120, 0),
half_reverse_cuban_eight(40),
straight_roll(40, 0),
two_point_roll(180),
straight_roll(40, 0),
half_reverse_cuban_eight(40),
straight_roll(20, 0),
upline_45(20, 120),
straight_roll(20, 0),
split_s(60, 90),
straight_roll(40, 0),
straight_roll(180, 1),
straight_flight(40, 0),
half_cuban_eight(40),
straight_roll(100, 0),
loop(40, 0, 2),
straight_roll(100, 0),
immelmann_turn(60, 90),
straight_roll(20, 0),
downline_45(20, 120),
straight_roll(20, 0),
half_cuban_eight(40),
straight_roll(100, 0),
})
end
--[[
F3A p23, preliminary schedule 2023
--]]
function f3a_p23()
return path_composer("f3a_p23", {
straight_roll(40, 0),
p23_1(30, 200, 200), -- top hat
straight_roll(40, 0),
p23_2(30, 200), -- half sq
straight_roll(90, 0),
p23_3(30, 200), -- humpty
straight_roll(50, 0),
p23_4(30, 200), -- on corner
straight_roll(40, 0),
p23_5(30, 200), -- 45 up
straight_roll(40, 0),
p23_6(30, 200), -- 3 sided
straight_roll(20, 0),
})
end
function test_all_paths()
return path_composer("test_all_paths", {
figure_eight(100, 45),
straight_roll(20, 0),
loop(30, 0, 1),
straight_roll(20, 0),
horizontal_rectangle(100, 100, 20, 45),
straight_roll(20, 0),
climbing_circle(100, 20, 45),
straight_roll(20, 0),
vertical_aerobatic_box(100, 100, 20, 0),
straight_roll(20, 0),
rolling_circle(100, 2, 0, 0),
straight_roll(20, 0),
half_cuban_eight(30),
straight_roll(20, 0),
half_reverse_cuban_eight(30),
straight_roll(20, 0),
cuban_eight(30),
straight_roll(20, 0),
humpty_bump(30, 100),
straight_flight(100, 45),
scale_figure_eight(100, 45),
straight_roll(20, 0),
immelmann_turn(30, 60),
straight_roll(20, 0),
split_s(30, 60),
straight_roll(20, 0),
upline_45(20, 50),
straight_roll(20, 0),
downline_45(20, 50),
})
end
---------------------------------------------------
--[[
target speed is taken as max of target airspeed and current 3D
velocity at the start of the maneuver
--]]
function target_groundspeed()
return math.max(ahrs:get_EAS2TAS()*TRIM_ARSPD_CM:get()*0.01, ahrs:get_velocity_NED():length())
end
--args:
-- path_f: path function returning position
-- t: normalised [0, 1] time
-- arg1, arg2: arguments for path function
-- orientation: maneuver frame orientation
--returns: requested position, angle and speed in maneuver frame
function rotate_path(path_f, t, orientation, offset)
t = constrain(t, 0, 1)
point = path_f.get_pos(t)
angle = path_f.get_roll(t)
speed = path_f.get_speed(t)
orientation:earth_to_body(point)
return point+offset, math.rad(angle), speed
end
--Given vec1, vec2, returns an (rotation axis, angle) tuple that rotates vec1 to be parallel to vec2
--If vec1 and vec2 are already parallel, returns a zero vector and zero angle
--Note that the rotation will not be unique.
function vectors_to_rotation(vector1, vector2)
axis = vector1:cross(vector2)
if axis:length() < 0.00001 then
local vec = Vector3f()
vec:x(1)
return vec, 0
end
axis:normalize()
angle = vector1:angle(vector2)
return axis, angle
end
--returns Quaternion
function vectors_to_rotation_w_roll(vector1, vector2, roll)
axis, angle = vectors_to_rotation(vector1, vector2)
local vector_rotation = Quaternion()
vector_rotation:from_axis_angle(axis, angle)
local roll_rotation = Quaternion()
roll_rotation:from_euler(roll, 0, 0)
local total_rot = vector_rotation*roll_rotation
return to_axis_and_angle(total_rot)
end
--Given vec1, vec2, returns an angular velocity tuple that rotates vec1 to be parallel to vec2
--If vec1 and vec2 are already parallel, returns a zero vector and zero angle
function vectors_to_angular_rate(vector1, vector2, time_constant)
axis, angle = vectors_to_rotation(vector1, vector2)
angular_velocity = angle/time_constant
return axis:scale(angular_velocity)
end
function vectors_to_angular_rate_w_roll(vector1, vector2, time_constant, roll)
axis, angle = vectors_to_rotation_w_roll(vector1, vector2, roll)
angular_velocity = angle/time_constant
return axis:scale(angular_velocity)
end
-- convert a quaternion to axis angle form
function to_axis_and_angle(quat)
local axis_angle = Vector3f()
quat:to_axis_angle(axis_angle)
angle = axis_angle:length()
if angle < 0.00001 then
return makeVector3f(1.0, 0.0, 0.0), 0.0
end
return axis_angle:scale(1.0/angle), angle
end
--projects x onto the othogonal subspace of span(unit_v)
function ortho_proj(x, unit_v)
local temp_x = unit_v:cross(x)
return unit_v:cross(temp_x)
end
-- log a pose from position and quaternion attitude
function log_pose(logname, pos, quat)
logger.write(logname, 'px,py,pz,q1,q2,q3,q4,r,p,y','ffffffffff',
pos:x(),
pos:y(),
pos:z(),
quat:q1(),
quat:q2(),
quat:q3(),
quat:q4(),
math.deg(quat:get_euler_roll()),
math.deg(quat:get_euler_pitch()),
math.deg(quat:get_euler_yaw()))
end
--[[
check if a number is Nan.
--]]
function isNaN(value)
-- NaN is lua is not equal to itself
return value ~= value
end
function Vec3IsNaN(v)
return isNaN(v:x()) or isNaN(v:y()) or isNaN(v:z())
end
function qIsNaN(q)
return isNaN(q:q1()) or isNaN(q:q2()) or isNaN(q:q3()) or isNaN(q:q4())
end
path_var.count = 0
path_var.initial_ori = Quaternion()
path_var.initial_maneuver_to_earth = Quaternion()
function do_path()
local now = millis():tofloat() * 0.001
path_var.count = path_var.count + 1
local target_dt = 1.0/LOOP_RATE
local path = current_task.fn
if not current_task.started then
local initial_yaw_deg = current_task.initial_yaw_deg
current_task.started = true
local speed = target_groundspeed()
path_var.target_speed = speed
path_var.length = path.get_length()
path_var.total_rate_rads_ef = makeVector3f(0.0, 0.0, 0.0)
--assuming constant velocity
path_var.total_time = path_var.length/speed
path_var.last_pos = path.get_pos(0) --position at t0
--deliberately only want yaw component, because the maneuver should be performed relative to the earth, not relative to the initial orientation
path_var.initial_ori:from_euler(0, 0, math.rad(initial_yaw_deg))
path_var.initial_maneuver_to_earth:from_euler(0, 0, -math.rad(initial_yaw_deg))
path_var.initial_ef_pos = ahrs:get_relative_position_NED_origin()
local corrected_position_t0_ef, angle_t0, s0 = rotate_path(path, target_dt/path_var.total_time,
path_var.initial_ori, path_var.initial_ef_pos)
local corrected_position_t1_ef, angle_t1, s0 = rotate_path(path, 2*target_dt/path_var.total_time,
path_var.initial_ori, path_var.initial_ef_pos)
path_var.start_pos = ahrs:get_position()
path_var.path_int = path_var.start_pos:copy()
speed_PI.reset()
path_var.accumulated_orientation_rel_ef = path_var.initial_ori
path_var.time_correction = 0.0
path_var.filtered_angular_velocity = Vector3f()
path_var.start_time = now + target_dt
path_var.last_time = now
path_var.average_dt = target_dt
path_var.scaled_dt = target_dt
path_var.path_t = 0
return true
end
local vel_length = ahrs:get_velocity_NED():length()
local actual_dt = now - path_var.last_time
local local_n_dt = actual_dt/path_var.total_time
path_var.last_time = now
if path_var.path_t + 2*local_n_dt > 1.0 then
return false
end
--[[
calculate positions and angles at previous, current and next time steps
--]]
next_target_pos_ef = next_target_pos_ef
2022-10-29 04:49:02 -03:00
local p0, r0, s0 = rotate_path(path, path_var.path_t,
path_var.initial_ori, path_var.initial_ef_pos)
local p1, r1, s1 = rotate_path(path, path_var.path_t + 1*local_n_dt,
path_var.initial_ori, path_var.initial_ef_pos)
local p2, r2, s2 = rotate_path(path, path_var.path_t + 2*local_n_dt,
path_var.initial_ori, path_var.initial_ef_pos)
local current_measured_pos_ef = ahrs:get_relative_position_NED_origin()
--[[
get tangents to the path
--]]
local tangent1_ef = p1 - p0
local tangent2_ef = p2 - p1
local tv_unit = tangent2_ef:copy()
if tv_unit:length() < 0.00001 then
gcs:send_text(0, string.format("path not advancing %f", tv_unit:length()))
end
tv_unit:normalize()
--[[
use actual vehicle velocity to calculate how far along the
path we have progressed
--]]
local v = ahrs:get_velocity_NED()
local path_dist = v:dot(tv_unit)*actual_dt
if path_dist < 0 then
gcs:send_text(0, string.format("aborting %.2f", path_dist))
return false
end
local path_t_delta = constrain(path_dist/path_var.length, 0.2*local_n_dt, 4*local_n_dt)
--[[
recalculate the current path position and angle based on actual delta time
--]]
2022-10-29 04:49:02 -03:00
p1, r1, s1 = rotate_path(path,
constrain(path_var.path_t + path_t_delta, 0, 1),
path_var.initial_ori, path_var.initial_ef_pos)
2022-10-29 04:49:02 -03:00
p2, r2, s2 = rotate_path(path,
constrain(path_var.path_t + 2*path_t_delta, 0, 1),
path_var.initial_ori, path_var.initial_ef_pos)
path_var.path_t = path_var.path_t + path_t_delta
-- tangents needs to be recalculated
tangent1_ef = p1 - p0
tangent2_ef = p2 - p1
tv_unit = tangent2_ef:copy()
tv_unit:normalize()
-- error in position versus current point on the path
local pos_error_ef = current_measured_pos_ef - p1
--[[
calculate a time correction. We first get the projection of
the position error onto the track. This tells us how far we
are ahead or behind on the track
--]]
local path_dist_err_m = tv_unit:dot(pos_error_ef)
-- normalize against the total path length
local path_err_t = path_dist_err_m / path_var.length
-- don't allow the path to go backwards in time, or faster than twice the actual rate
path_err_t = constrain(path_err_t, -0.9*path_t_delta, 2*path_t_delta)
-- correct time to bring us back into sync
path_var.path_t = path_var.path_t + TIME_CORR_P:get() * path_err_t
--[[
calculation of error correction, calculating acceleration
needed to bring us back on the path, and body rates in pitch and
yaw to achieve those accelerations
--]]
-- component of pos_err perpendicular to the current path tangent
local B = ortho_proj(pos_error_ef, tv_unit)
-- derivative of pos_err perpendicular to the current path tangent, assuming tangent is constant
local B_dot = ortho_proj(v, tv_unit)
-- gains for error correction.
local acc_err_ef = B:scale(ERR_CORR_P:get()) + B_dot:scale(ERR_CORR_D:get())
local acc_err_bf = ahrs:earth_to_body(acc_err_ef)
local TAS = constrain(ahrs:get_EAS2TAS()*ahrs:airspeed_estimate(), 3, 100)
local corr_rate_bf_y_rads = -acc_err_bf:z()/TAS
local corr_rate_bf_z_rads = acc_err_bf:y()/TAS
local cor_ang_vel_bf_rads = makeVector3f(0.0, corr_rate_bf_y_rads, corr_rate_bf_z_rads)
if Vec3IsNaN(cor_ang_vel_bf_rads) then
cor_ang_vel_bf_rads = makeVector3f(0,0,0)
end
local cor_ang_vel_bf_dps = cor_ang_vel_bf_rads:scale(math.deg(1))
--[[
work out body frame path rate, this is based on two adjacent tangents on the path
--]]
local path_rate_ef_rads = vectors_to_angular_rate(tangent1_ef, tangent2_ef, actual_dt)
if Vec3IsNaN(path_rate_ef_rads) then
gcs:send_text(0,string.format("path_rate_ef_rads: NaN"))
path_rate_ef_rads = makeVector3f(0,0,0)
end
local path_rate_ef_dps = path_rate_ef_rads:scale(math.deg(1))
local path_rate_bf_dps = ahrs:earth_to_body(path_rate_ef_dps)
-- set the path roll rate
path_rate_bf_dps:x(math.deg(wrap_pi(r1 - r0)/actual_dt))
--[[
calculate body frame roll rate to achieved the desired roll
angle relative to the maneuver path
--]]
local zero_roll_angle_delta = Quaternion()
zero_roll_angle_delta:from_angular_velocity(path_rate_ef_rads, actual_dt)
path_var.accumulated_orientation_rel_ef = zero_roll_angle_delta*path_var.accumulated_orientation_rel_ef
path_var.accumulated_orientation_rel_ef:normalize()
local mf_axis = makeVector3f(1, 0, 0)
path_var.accumulated_orientation_rel_ef:earth_to_body(mf_axis)
local orientation_rel_mf_with_roll_angle = Quaternion()
orientation_rel_mf_with_roll_angle:from_axis_angle(mf_axis, r1)
orientation_rel_ef_with_roll_angle = orientation_rel_mf_with_roll_angle*path_var.accumulated_orientation_rel_ef
--[[
calculate the error correction for the roll versus the desired roll
--]]
local roll_error = orientation_rel_ef_with_roll_angle*ahrs:get_quaternion():inverse()
roll_error:normalize()
local err_axis_ef, err_angle_rad = to_axis_and_angle(roll_error)
local time_const_roll = ROLL_CORR_TC:get()
local err_angle_rate_ef_rads = err_axis_ef:scale(err_angle_rad/time_const_roll)
local err_angle_rate_bf_dps = ahrs:earth_to_body(err_angle_rate_ef_rads):scale(math.deg(1))
-- zero any non-roll components
err_angle_rate_bf_dps:y(0)
err_angle_rate_bf_dps:z(0)
--[[
total angular rate is sum of path rate, correction rate and roll correction rate
--]]
local tot_ang_vel_bf_dps = path_rate_bf_dps + cor_ang_vel_bf_dps + err_angle_rate_bf_dps
--[[
log POSM is pose-measured, POST is pose-track, POSB is pose-track without the roll
--]]
log_pose('POSM', current_measured_pos_ef, ahrs:get_quaternion())
log_pose('POST', p1, orientation_rel_ef_with_roll_angle)
logger.write('AETM', 'T,Terr','ff',
path_var.path_t,
path_err_t)
logger.write('AERT','Cx,Cy,Cz,Px,Py,Pz,Ex,Tx,Ty,Tz', 'ffffffffff',
cor_ang_vel_bf_dps:x(), cor_ang_vel_bf_dps:y(), cor_ang_vel_bf_dps:z(),
path_rate_bf_dps:x(), path_rate_bf_dps:y(), path_rate_bf_dps:z(),
err_angle_rate_bf_dps:x(),
tot_ang_vel_bf_dps:x(), tot_ang_vel_bf_dps:y(), tot_ang_vel_bf_dps:z())
--log_pose('POSB', p1, path_var.accumulated_orientation_rel_ef)
--[[
run the throttle based speed controller
--]]
if s1 == nil then
s1 = path_var.target_speed
end
--[[
get the anticipated pitch at the throttle lookahead time
we use the maximum of the current path pitch and the anticipated pitch
--]]
local qchange = Quaternion()
qchange:from_angular_velocity(path_rate_ef_rads, AEROM_THR_LKAHD:get())
local qnew = qchange * orientation_rel_ef_with_roll_angle
local anticipated_pitch_rad = math.max(qnew:get_euler_pitch(), orientation_rel_ef_with_roll_angle:get_euler_pitch())
throttle = speed_PI.update(s1, anticipated_pitch_rad)
throttle = constrain(throttle, 0, 100.0)
if isNaN(throttle) or Vec3IsNaN(tot_ang_vel_bf_dps) then
gcs:send_text(0,string.format("Path NaN - aborting"))
return false
end
vehicle:set_target_throttle_rate_rpy(throttle, tot_ang_vel_bf_dps:x(), tot_ang_vel_bf_dps:y(), tot_ang_vel_bf_dps:z())
if now - last_named_float_t > 1.0 / NAME_FLOAT_RATE then
last_named_float_t = now
gcs:send_named_float("PERR", pos_error_ef:length())
end
return true
end
--[[
an object defining a path
--]]
function PathFunction(fn, name)
local self = {}
self.fn = fn
self.name = name
return self
end
command_table = {}
command_table[1] = PathFunction(figure_eight, "Figure Eight")
command_table[2] = PathFunction(loop, "Loop")
command_table[3] = PathFunction(horizontal_rectangle, "Horizontal Rectangle")
command_table[4] = PathFunction(climbing_circle, "Climbing Circle")
command_table[5] = PathFunction(vertical_aerobatic_box, "Vertical Box")
-- 6 was banked circle
command_table[7] = PathFunction(straight_roll, "Axial Roll")
command_table[8] = PathFunction(rolling_circle, "Rolling Circle")
command_table[9] = PathFunction(half_cuban_eight, "Half Cuban Eight")
command_table[10]= PathFunction(half_reverse_cuban_eight, "Half Reverse Cuban Eight")
command_table[11]= PathFunction(cuban_eight, "Cuban Eight")
command_table[12]= PathFunction(humpty_bump, "Humpty Bump")
command_table[13]= PathFunction(straight_flight, "Straight Flight")
command_table[14]= PathFunction(scale_figure_eight, "Scale Figure Eight")
command_table[15]= PathFunction(immelmann_turn, "Immelmann Turn")
command_table[16]= PathFunction(split_s, "Split-S")
command_table[17]= PathFunction(upline_45, "Upline-45")
command_table[18]= PathFunction(downline_45, "Downline-45")
command_table[19]= PathFunction(stall_turn, "Stall Turn")
command_table[200] = PathFunction(test_all_paths, "Test Suite")
command_table[201] = PathFunction(nz_clubman, "NZ Clubman")
command_table[202] = PathFunction(f3a_p23, "FAI F3A P23")
-- get a location structure from a waypoint number
function get_location(i)
local m = mission:get_item(i)
local loc = Location()
loc:lat(m:x())
loc:lng(m:y())
loc:relative_alt(true)
loc:terrain_alt(false)
loc:origin_alt(false)
loc:alt(math.floor(m:z()*100))
return loc
end
-- set wp location
function wp_setloc(wp, loc)
wp:x(loc:lat())
wp:y(loc:lng())
wp:z(loc:alt()*0.01)
end
-- add a waypoint to the end of the mission
function wp_add(loc,ctype,param1,param2)
local wp = mavlink_mission_item_int_t()
wp_setloc(wp,loc)
wp:command(ctype)
local seq = mission:num_commands()
wp:seq(seq)
wp:param1(param1)
wp:param2(param2)
wp:frame(3) -- global position, relative alt
mission:set_item(seq, wp)
end
-- add a NAV_SCRIPT_TIME waypoint to the end of the mission
function wp_add_nav_script(cmdid,arg1,arg2,arg3,arg4)
local wp = mavlink_mission_item_int_t()
wp:command(NAV_SCRIPT_TIME)
local seq = mission:num_commands()
wp:seq(seq)
wp:param1(cmdid)
wp:param2(0) -- timeout
wp:param3(arg1)
wp:param4(arg2)
wp:x(arg3)
wp:y(arg4)
mission:set_item(seq, wp)
end
--[[
create auto mission 1
--]]
function create_auto_mission1()
local N = mission:num_commands()
if N ~= 4 then
gcs:send_text(0,string.format("Auto mission needs takeoff and 2 WPs (got %u)", N))
return
end
local takeoff_m = mission:get_item(1)
if takeoff_m:command() ~= NAV_TAKEOFF then
gcs:send_text(0,string.format("First WP needs to be takeoff"))
return
end
local wp1 = get_location(2)
local wp2 = get_location(3)
local wp_dist = wp1:get_distance(wp2)
local wp_bearing = math.deg(wp1:get_bearing(wp2))
local radius = AUTO_RAD:get()
gcs:send_text(0, string.format("WP Distance %.0fm bearing %.1fdeg", wp_dist, wp_bearing))
-- find mid-point, 25% and 75% points
local wp_mid = wp1:copy()
wp_mid:offset_bearing(wp_bearing, wp_dist*0.5)
local wp_25pct = wp1:copy()
wp_25pct:offset_bearing(wp_bearing, wp_dist*0.25)
local wp_75pct = wp1:copy()
wp_75pct:offset_bearing(wp_bearing, wp_dist*0.75)
gcs:send_text(0,"Adding half cuban eight")
wp_add_nav_script(9, radius, 0, 0, 0)
gcs:send_text(0,"Adding loop")
wp_add(wp_mid, NAV_WAYPOINT, 0, 1)
wp_add_nav_script(2, radius, 0, 0, 0)
gcs:send_text(0,"Adding half reverse cuban eight")
wp_add(wp1, NAV_WAYPOINT, 0, 0)
wp_add_nav_script(10, radius, 0, 0, 0)
gcs:send_text(0,"Adding axial roll")
wp_add(wp_25pct, NAV_WAYPOINT, 0, 1)
wp_add_nav_script(7, wp_dist*0.5, 1, 0, 0)
gcs:send_text(0,"Adding humpty bump")
wp_add(wp2, NAV_WAYPOINT, 0, 1)
wp_add_nav_script(12, radius*0.25, 0.5*radius, 0, 0)
gcs:send_text(0,"Adding cuban eight")
wp_add(wp_mid, NAV_WAYPOINT, 0, 0)
wp_add_nav_script(11, radius, 0, 0, 0)
wp_add(wp1, NAV_WAYPOINT, 0, 0)
end
function create_auto_mission()
if AUTO_MIS:get() == 1 then
create_auto_mission1()
else
gcs:send_text(0, string.format("Unknown auto mission", AUTO_MIS:get()))
end
end
function PathTask(fn, name, id, initial_yaw_deg, arg1, arg2, arg3, arg4)
self = {}
self.fn = fn(arg1, arg2, arg3, arg4)
self.name = name
self.id = id
self.initial_yaw_deg = initial_yaw_deg
self.started = false
return self
end
-- see if an auto mission item needs to be run
function check_auto_mission()
id, cmd, arg1, arg2, arg3, arg4 = vehicle:nav_script_time()
if not id then
return
end
if id ~= last_id then
-- we've started a new command
current_task = nil
last_id = id
2022-10-26 00:48:24 -03:00
local initial_yaw_deg = math.deg(ahrs:get_yaw())
gcs:send_text(0, string.format("Starting %s!", command_table[cmd].name ))
-- work out yaw between previous WP and next WP
local cnum = mission:get_current_nav_index()
-- find previous nav waypoint
local loc_prev = get_wp_location(cnum-1)
local loc_next = get_wp_location(cnum+1)
local i= cnum-1
while get_wp_location(i):lat() == 0 and get_wp_location(i):lng() == 0 do
i = i-1
loc_prev = get_wp_location(i)
end
-- find next nav waypoint
i = cnum+1
while get_wp_location(i):lat() == 0 and get_wp_location(i):lng() == 0 do
i = i+1
loc_next = get_wp_location(resolve_jump(i))
end
2022-10-26 00:48:24 -03:00
local wp_yaw_deg = math.deg(loc_prev:get_bearing(loc_next))
if math.abs(wrap_180(initial_yaw_deg - wp_yaw_deg)) > 90 then
gcs:send_text(0, string.format("Doing turnaround!"))
wp_yaw_deg = wrap_180(wp_yaw_deg + 180)
end
initial_yaw_deg = wp_yaw_deg
current_task = PathTask(command_table[cmd].fn, command_table[cmd].name,
id, initial_yaw_deg, arg1, arg2, arg3, arg4)
end
end
local last_trick_action_state = 0
local trick_sel_chan = nil
local last_trick_selection = nil
--[[
get selected trick. Trick numbers are 1 .. TRIK_COUNT. A value of 0 is invalid
--]]
function get_trick_selection()
if trick_sel_chan == nil then
trick_sel_chan = rc:find_channel_for_option(TRIK_SEL_FN:get())
if trick_sel_chan == nil then
return 0
end
end
-- get trick selection based on selection channel input and number of tricks
local i = math.floor(TRIK_COUNT:get() * constrain(0.5*(trick_sel_chan:norm_input_ignore_trim()+1),0,0.999)+1)
if TRICKS[i] == nil then
return 0
end
return i
end
--[[
check for running a trick
--]]
function check_trick()
local selection = get_trick_selection()
local action = rc:get_aux_cached(TRIK_ACT_FN:get())
if action == 0 and current_task ~= nil then
gcs:send_text(0,string.format("Trick aborted"))
current_task = nil
last_trick_selection = nil
-- use invalid mode to disable script control
vehicle:nav_scripting_enable(255)
return
end
if selection == 0 then
return
end
if action == 1 and selection ~= last_trick_selection then
local id = TRICKS[selection].id:get()
if command_table[id] ~= nil then
local cmd = command_table[id]
gcs:send_text(0, string.format("Trick %u selected (%s)", selection, cmd.name))
last_trick_selection = selection
return
end
end
if current_task ~= nil then
-- let the task finish
return
end
if action ~= last_trick_action_state then
last_trick_selection = selection
last_trick_action_state = action
if selection == 0 then
gcs:send_text(0, string.format("No trick selected"))
return
end
local id = TRICKS[selection].id:get()
if command_table[id] == nil then
gcs:send_text(0, string.format("Invalid trick ID %u", id))
return
end
local cmd = command_table[id]
if action == 1 then
gcs:send_text(0, string.format("Trick %u selected (%s)", selection, cmd.name))
end
if action == 2 then
last_trick_selection = nil
local current_mode = vehicle:get_mode()
if not vehicle:nav_scripting_enable(current_mode) then
gcs:send_text(0, string.format("Tricks not available in mode"))
return
end
gcs:send_text(0, string.format("Trick %u started (%s)", selection, cmd.name))
local initial_yaw_deg = math.deg(ahrs:get_yaw())
current_task = PathTask(cmd.fn,
cmd.name,
nil,
initial_yaw_deg,
TRICKS[selection].args[1]:get(),
TRICKS[selection].args[2]:get(),
TRICKS[selection].args[3]:get(),
TRICKS[selection].args[4]:get())
end
end
end
function update()
-- check if we should create a mission
if AUTO_MIS:get() > 0 then
create_auto_mission()
AUTO_MIS:set_and_save(0)
end
check_auto_mission()
if TRICKS ~= nil and vehicle:get_mode() ~= MODE_AUTO then
check_trick()
end
if current_task ~= nil then
if not do_path() then
gcs:send_text(0, string.format("Finishing %s!", current_task.name))
if current_task.id ~= nil then
vehicle:nav_script_time_done(current_task.id)
else
-- use invalid mode to disable script control
vehicle:nav_scripting_enable(255)
end
current_task = nil
end
end
return update, 1000.0/LOOP_RATE
end
return update()