Ardupilot2/libraries/AP_Scripting/examples/Aerobatics/Trajectory/plane_aerobatics.lua

1343 lines
46 KiB
Lua
Raw Normal View History

--[[ perform simple aerobatic manoeuvres in AUTO mode
cmd = 1: axial rolls, arg1 = roll rate dps, arg2 = number of rolls
cmd = 2: loops or 180deg return, arg1 = pitch rate dps, arg2 = number of loops, if zero do a 1/2 cuban8-like return
cmd = 3: rolling circle, arg1 = radius, arg2 = number of rolls
cmd = 4: knife edge at any angle, arg1 = roll angle to hold, arg2 = duration
cmd = 5: pause, holding heading and alt to allow stabilization after a move, arg1 = duration in seconds
]]--
-- setup param block for aerobatics, reserving 30 params beginning with AERO_
local PARAM_TABLE_KEY = 70
local PARAM_TABLE_PREFIX = 'AEROM_'
assert(param:add_table(PARAM_TABLE_KEY, "AEROM_", 30), 'could not add param table')
-- add a parameter and bind it to a variable
function bind_add_param(name, idx, default_value)
assert(param:add_param(PARAM_TABLE_KEY, idx, name, default_value), string.format('could not add param %s', name))
return Parameter(PARAM_TABLE_PREFIX .. name)
end
HGT_P = bind_add_param('HGT_P', 1, 1)
HGT_I = bind_add_param('HGT_I', 2, 2)
HGT_KE_BIAS = bind_add_param('HGT_KE_ADD', 3, 20)
THR_PIT_FF = bind_add_param('THR_PIT_FF', 4, 80)
SPD_P = bind_add_param('SPD_P', 5, 5)
SPD_I = bind_add_param('SPD_I', 6, 25)
ERR_CORR_TC = bind_add_param('ERR_COR_TC', 7, 3)
ROLL_CORR_TC = bind_add_param('ROL_COR_TC', 8, 0.25)
AUTO_MIS = bind_add_param('AUTO_MIS', 9, 0)
AUTO_RAD = bind_add_param('AUTO_RAD', 10, 40)
TIME_CORR_P = bind_add_param('TIME_COR_P', 11, 1.0)
ERR_CORR_P = bind_add_param('ERR_COR_P', 12, 2.0)
ERR_CORR_D = bind_add_param('ERR_COR_D', 13, 2.8)
--local VEL_TC = bind_add_param('VEL_TC', 8, 3)
function bind_add_param(name, idx, default_value)
assert(param:add_param(PARAM_TABLE_KEY, idx, name, default_value), string.format('could not add param %s', name))
return Parameter(PARAM_TABLE_PREFIX .. name)
end
local NAV_TAKEOFF = 22
local NAV_WAYPOINT = 16
local NAV_SCRIPT_TIME = 42702
local LOOP_RATE = 20
DO_JUMP = 177
k_throttle = 70
local TRIM_THROTTLE = Parameter("TRIM_THROTTLE")
local TRIM_ARSPD_CM = Parameter("TRIM_ARSPD_CM")
local RLL2SRV_TCONST = Parameter("RLL2SRV_TCONST")
local PITCH_TCONST = Parameter("PTCH2SRV_TCONST")
local last_roll_err = 0.0
local last_id = 0
local initial_yaw_deg = 0
local wp_yaw_deg = 0
local initial_height = 0
local repeat_count = 0
local running = false
local roll_stage = 0
local MIN_SPEED = 0.1
local LOOKAHEAD = 1
-- constrain a value between limits
function constrain(v, vmin, vmax)
if v < vmin then
v = vmin
end
if v > vmax then
v = vmax
end
return v
end
-- roll angle error 180 wrap to cope with errors while in inverted segments
function roll_angle_error_wrap(roll_angle_error)
if math.abs(roll_angle_error) > 180 then
if roll_angle_error > 0 then
roll_angle_error = roll_angle_error - 360
else
roll_angle_error= roll_angle_error +360
end
end
return roll_angle_error
end
--roll controller to keep wings level in earth frame. if arg is 0 then level is at only 0 deg, otherwise its at 180/-180 roll also for loops
function earth_frame_wings_level(arg)
local roll_deg = math.deg(ahrs:get_roll())
local roll_angle_error = 0.0
if (roll_deg > 90 or roll_deg < -90) and arg ~= 0 then
roll_angle_error = 180 - roll_deg
else
roll_angle_error = - roll_deg
end
return roll_angle_error_wrap(roll_angle_error)/(RLL2SRV_TCONST:get())
end
function wrap_360(angle)
local res = math.fmod(angle, 360.0)
if res < 0 then
res = res + 360.0
end
return res
end
function wrap_180(angle)
local res = wrap_360(angle)
if res > 180 then
res = res - 360
end
return res
end
function wrap_pi(angle)
local angle_deg = math.deg(angle)
local angle_wrapped = wrap_180(angle_deg)
return math.rad(angle_wrapped)
end
function wrap_2pi(angle)
local angle_deg = math.deg(angle)
local angle_wrapped = wrap_360(angle_deg)
return math.rad(angle_wrapped)
end
function euler_rad_ef_to_bf(roll, pitch, yaw, ef_roll_rate, ef_pitch_rate, ef_yaw_rate)
local sr = math.sin(roll)
local cr = math.cos(roll)
local sp = math.sin(pitch)
local cp = math.cos(pitch)
local sy = math.sin(yaw)
local cy = math.cos(yaw)
local bf_roll_rate = ef_roll_rate + -sp*ef_yaw_rate
local bf_pitch_rate = cr*ef_pitch_rate + sr*cp*ef_yaw_rate
local bf_yaw_rate = -sr*ef_pitch_rate + cr*cp*ef_yaw_rate
return makeVector3f(bf_roll_rate, bf_pitch_rate, bf_yaw_rate)
end
-- a PI controller implemented as a Lua object
local function PI_controller(kP,kI,iMax)
-- the new instance. You can put public variables inside this self
-- declaration if you want to
local self = {}
-- private fields as locals
local _kP = kP or 0.0
local _kI = kI or 0.0
local _kD = kD or 0.0
local _iMax = iMax
local _last_t = nil
local _I = 0
local _P = 0
local _total = 0
local _counter = 0
local _target = 0
local _current = 0
-- update the controller.
function self.update(target, current)
local now = millis():tofloat() * 0.001
if not _last_t then
_last_t = now
end
local dt = now - _last_t
_last_t = now
local err = target - current
_counter = _counter + 1
local P = _kP * err
_I = _I + _kI * err * dt
if _iMax then
_I = constrain(_I, -_iMax, iMax)
end
local I = _I
local ret = P + I
_target = target
_current = current
_P = P
_total = ret
return ret
end
-- reset integrator to an initial value
function self.reset(integrator)
_I = integrator
end
function self.set_I(I)
_kI = I
end
function self.set_P(P)
_kP = P
end
function self.set_Imax(Imax)
_iMax = Imax
end
-- log the controller internals
function self.log(name, add_total)
-- allow for an external addition to total
logger.write(name,'Targ,Curr,P,I,Total,Add','ffffff',_target,_current,_P,_I,_total,add_total)
end
-- return the instance
return self
end
local function speed_controller(kP_param,kI_param, kFF_roll_param, kFF_pitch_param, Imax)
local self = {}
local kFF_roll = kFF_roll_param
local kFF_pitch = kFF_pitch_param
local PI = PI_controller(kP_param:get(), kI_param:get(), Imax)
function self.update(target)
local current_speed = ahrs:get_velocity_NED():length()
local throttle = PI.update(target, current_speed)
throttle = throttle + math.sin(ahrs:get_pitch())*kFF_pitch:get()
throttle = throttle + math.abs(math.sin(ahrs:get_roll()))*kFF_roll:get()
return throttle
end
function self.reset()
PI.reset(0)
local temp_throttle = self.update(ahrs:get_velocity_NED():length())
local current_throttle = SRV_Channels:get_output_scaled(k_throttle)
PI.reset(current_throttle-temp_throttle)
end
return self
end
local function height_controller(kP_param,kI_param,KnifeEdge_param,Imax)
local self = {}
local kP = kP_param
local kI = kI_param
local KnifeEdge = KnifeEdge_param
local PI = PI_controller(kP:get(), kI:get(), Imax)
function self.update(target)
local target_pitch = PI.update(target, ahrs:get_position():alt()*0.01)
local roll_rad = ahrs:get_roll()
local ke_add = math.abs(math.sin(roll_rad)) * KnifeEdge:get()
target_pitch = target_pitch + ke_add
PI.log("HPI", ke_add)
return target_pitch
end
function self.reset()
PI.reset(math.max(math.deg(ahrs:get_pitch()), 3.0))
PI.set_P(kP:get())
PI.set_I(kI:get())
end
return self
end
local height_PI = height_controller(HGT_P, HGT_I, HGT_KE_BIAS, 20.0)
local speed_PI = speed_controller(SPD_P, SPD_I, HGT_KE_BIAS, THR_PIT_FF, 100.0)
function sgn(x)
local eps = 0.000001
if (x > eps) then
return 1.0
elseif x < eps then
return -1.0
else
return 0.0
end
end
function euler_rate_ef_to_bf(rrate, prate, yrate, roll, pitch, yaw)
local sr = math.sin(roll)
local cr = math.cos(roll)
local sp = math.sin(pitch)
local cp = math.cos(pitch)
local sy = math.sin(yaw)
local cy = math.cos(yaw)
local bf_roll_rate = rrate -sp*yrate
local bf_pitch_rate = cr*prate + sr*cp*yrate
local bf_yaw_rate = -sr*prate + cr*cp*yrate
return makeVector3f(bf_roll_rate, bf_pitch_rate, bf_yaw_rate)
end
-- a controller to target a zero pitch angle and zero heading change, used in a roll
-- output is a body frame pitch rate, with convergence over time tconst in seconds
function pitch_controller(target_pitch_deg, target_yaw_deg, tconst)
local roll_deg = math.deg(ahrs:get_roll())
local pitch_deg = math.deg(ahrs:get_pitch())
local yaw_deg = math.deg(ahrs:get_yaw())
-- get earth frame pitch and yaw rates
local ef_pitch_rate = (target_pitch_deg - pitch_deg) / tconst
local ef_yaw_rate = wrap_180(target_yaw_deg - yaw_deg) / tconst
local bf_pitch_rate = math.sin(math.rad(roll_deg)) * ef_yaw_rate + math.cos(math.rad(roll_deg)) * ef_pitch_rate
local bf_yaw_rate = math.cos(math.rad(roll_deg)) * ef_yaw_rate - math.sin(math.rad(roll_deg)) * ef_pitch_rate
return bf_pitch_rate, bf_yaw_rate
end
-- a controller for throttle to account for pitch
function throttle_controller()
local pitch_rad = ahrs:get_pitch()
local thr_ff = THR_PIT_FF:get()
local throttle = TRIM_THROTTLE:get() + math.sin(pitch_rad) * thr_ff
return constrain(throttle, 0, 100.0)
end
-- recover entry altitude
function recover_alt()
local target_pitch = height_PI.update(initial_height)
local pitch_rate, yaw_rate = pitch_controller(target_pitch, wp_yaw_deg, PITCH_TCONST:get())
return target_pitch, pitch_rate, yaw_rate
end
function get_wp_location(i)
local m = mission:get_item(i)
local loc = Location()
loc:lat(m:x())
loc:lng(m:y())
loc:relative_alt(true)
loc:terrain_alt(false)
loc:origin_alt(false)
loc:alt(math.floor(m:z()*100))
return loc
end
function resolve_jump(i)
local m = mission:get_item(i)
while m:command() == DO_JUMP do
i = math.floor(m:param1())
m = mission:get_item(i)
end
return i
end
--------Trajectory definitions---------------------
function climbing_circle(t, radius, height, arg3, arg4)
local angle = t*math.pi*2
local vec = makeVector3f(radius*math.sin(angle), radius*(1.0-math.cos(angle)), -math.sin(0.5*angle)*height)
return vec, 0.0
end
function figure_eight(t, r, bank_angle, arg3, arg4)
local r_sign = sgn(r)
assert(math.abs(r_sign) > 0.1)
local r = math.abs(r)
local T = 3.0*math.pi*r + r*math.sqrt(2) + 2*r
local rsqr2 = r*math.sqrt(2)
local pos
local roll
if (t < rsqr2/T) then
pos = makeVector3f(T*t, 0.0, 0.0)
roll = 0.0
elseif (t < (rsqr2 + 5.0*math.pi*r/4.0)/T) then
pos = makeVector3f(r*math.cos(T*t/r - math.sqrt(2) - math.pi/2)+rsqr2, r_sign*(r + r*math.sin(T*t/r - math.sqrt(2) - math.pi/2)), 0)
roll = math.rad(bank_angle)
elseif (t < (rsqr2 + 5.0*math.pi*r/4.0 + r/4)/T) then
pos = makeVector3f(r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2))*(-r*math.sqrt(2)), r_sign*(r +r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2))*(-r*math.sqrt(2))), 0)
roll = 0.0
elseif (t < (rsqr2 + 5.0*math.pi*r/4.0 + 3*r/4)/T) then
pos = makeVector3f(r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2))*(-r*math.sqrt(2)), r_sign*(r +r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2))*(-r*math.sqrt(2))), 0)
roll = 0.0
elseif (t < (rsqr2 + 5.0*math.pi*r/4.0 + r)/T) then
pos = makeVector3f(r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2))*(-r*math.sqrt(2)), r_sign*(r +r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2))*(-r*math.sqrt(2))), 0)
roll = 0.0
elseif (t < (rsqr2 + 5.0*math.pi*r/4.0 + r + 3*math.pi*r/2.0)/T) then
pos = makeVector3f(r*math.cos(-T*t/r +5.0*math.pi/4.0 + math.sqrt(2) + 1 - math.pi/4) - r*math.sqrt(2.0), r_sign*(r + r*math.sin(-T*t/r +5.0*math.pi/4.0 + math.sqrt(2) + 1 - math.pi/4)), 0)
roll = -math.rad(bank_angle)
elseif (t < (rsqr2 + 5.0*math.pi*r/4.0 + r + 3*math.pi*r/2.0 + r/4.0)/T) then
pos = makeVector3f(-r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2) - 1 - 3*math.pi/2)*(r*math.sqrt(2)), r_sign*(r +r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2) - 1 - 3*math.pi/2.0 )*(-r*math.sqrt(2))), 0)
roll = 0
elseif (t < (rsqr2 + 5.0*math.pi*r/4.0 + r + 3*math.pi*r/2.0 + 3*r/4.0)/T) then
pos = makeVector3f(-r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2) - 1 - 3*math.pi/2)*(r*math.sqrt(2)), r_sign*(r +r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2) - 1 - 3*math.pi/2.0 )*(-r*math.sqrt(2))), 0)
roll = 0.0
elseif (t < (rsqr2 + 5.0*math.pi*r/4.0 + r + 3*math.pi*r/2.0 + r)/T) then
pos = makeVector3f(-r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2) - 1 - 3*math.pi/2)*(r*math.sqrt(2)), r_sign*(r +r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2) - 1 - 3*math.pi/2.0 )*(-r*math.sqrt(2))), 0)
roll = 0.0
else
pos = makeVector3f(r*math.cos(T*t/r - (6*math.pi/4.0 + math.sqrt(2) +2 ))+rsqr2, r_sign*(r + r*math.sin(T*t/r - (6*math.pi/4.0 + math.sqrt(2) +2 ))), 0)
roll = math.rad(bank_angle)
end
return pos, roll
end
function loop(t, radius, bank_angle, arg3, arg4)
local num_loops = math.abs(arg3)
if(arg3 <= 0.0) then
num_loops = 1
end
t = num_loops*t*math.pi*2
local vec = makeVector3f(math.sin(t), 0.0, -1.0 + math.cos(t))
return vec:scale(radius), math.rad(bank_angle)
end
function straight_roll(t, length, num_rolls, arg3, arg4)
local vec = makeVector3f(t*length, 0.0, 0.0)
return vec, t*num_rolls*2*math.pi
end
function straight_flight(t, length, bank_angle, arg3, arg4)
local pos = makeVector3f(t*length, 0, 0)
local roll = math.rad(bank_angle)
return pos, roll
end
function rolling_circle(t, radius, num_rolls, arg3, arg4)
--t = t*math.pi*2
local vec = Vector3f()
if radius < 0.0 then
vec = makeVector3f(math.sin(2*math.pi*t), -1.0+math.cos(2*math.pi*t), 0)
else
vec = makeVector3f(math.sin(2*math.pi*t), 1.0-math.cos(2*math.pi*t), 0)
end
return vec:scale(math.abs(radius)), t*num_rolls*2*math.pi
end
function banked_circle(t, radius, bank_angle, arg3, arg4)
--t = t*math.pi*2
local vec = Vector3f()
if radius < 0.0 then
vec = makeVector3f(math.sin(2*math.pi*t), -1.0+math.cos(2*math.pi*t), 0)
else
vec = makeVector3f(math.sin(2*math.pi*t), 1.0-math.cos(2*math.pi*t), 0)
end
return vec:scale(math.abs(radius)), math.deg(bank_angle)
end
function half_cuban_eight(t, r, unused, arg3, arg4)
local T = 3.0*math.pi*r/2.0 + 2*r*math.sqrt(2) + r
local trsqr2 = 2*r*math.sqrt(2)
local pos
local roll
if (t < trsqr2/T) then
pos = makeVector3f(T*t, 0.0, 0.0)
roll = 0.0
elseif (t < (trsqr2 + 5.0*math.pi*r/4.0)/T) then
pos = makeVector3f(r*math.cos(T*t/r - 2*math.sqrt(2) - math.pi/2)+trsqr2, 0, -r - r*math.sin(T*t/r - 2*math.sqrt(2) - math.pi/2))
roll = 0.0
elseif (t < (trsqr2 + 5.0*math.pi*r/4.0 + r/4)/T) then
pos = makeVector3f(3*r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - 2*math.sqrt(2))*(-r*math.sqrt(2)), 0, -r -r/math.sqrt(2) - (T*t/r - 5*math.pi/4 - 2*math.sqrt(2))*(-r*math.sqrt(2)))
roll = 0.0
elseif (t < (trsqr2 + 5.0*math.pi*r/4.0 + 3*r/4)/T) then
pos = makeVector3f(3*r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - 2*math.sqrt(2))*(-r*math.sqrt(2)), 0, -r -r/math.sqrt(2) - (T*t/r - 5*math.pi/4 - 2*math.sqrt(2))*(-r*math.sqrt(2)))
roll = (t - (trsqr2 + 5.0*math.pi*r/4.0 + r/4)/T)*2*math.pi*T/(r)
elseif (t < (trsqr2 + 5.0*math.pi*r/4.0 + r)/T) then
pos = makeVector3f(3*r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - 2*math.sqrt(2))*(-r*math.sqrt(2)), 0, -r -r/math.sqrt(2) - (T*t/r - 5*math.pi/4 - 2*math.sqrt(2))*(-r*math.sqrt(2)))
roll = math.pi
else
pos = makeVector3f(r*math.cos(-T*t/r +5.0*math.pi/4.0 + 2*math.sqrt(2) + 1 - math.pi/4), 0, -r -r*math.sin(-T*t/r +5.0*math.pi/4.0 + 2*math.sqrt(2) + 1 - math.pi/4))
roll = math.pi
--roll = 0
end
return pos, roll
end
function cuban_eight(t, r, unused, arg3, arg4)
local T = 3.0*math.pi*r + r*math.sqrt(2) + 2*r
local rsqr2 = r*math.sqrt(2)
local pos
local roll
if (t < rsqr2/T) then
pos = makeVector3f(T*t, 0.0, 0.0)
roll = 0.0
elseif (t < (rsqr2 + 5.0*math.pi*r/4.0)/T) then
pos = makeVector3f(r*math.cos(T*t/r - math.sqrt(2) - math.pi/2)+rsqr2, 0, -r - r*math.sin(T*t/r - math.sqrt(2) - math.pi/2))
roll = 0.0
elseif (t < (rsqr2 + 5.0*math.pi*r/4.0 + r/4)/T) then
pos = makeVector3f(r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2))*(-r*math.sqrt(2)), 0, -r -r/math.sqrt(2) - (T*t/r - 5*math.pi/4 - math.sqrt(2))*(-r*math.sqrt(2)))
roll = 0.0
elseif (t < (rsqr2 + 5.0*math.pi*r/4.0 + 3*r/4)/T) then
pos = makeVector3f(r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2))*(-r*math.sqrt(2)), 0, -r -r/math.sqrt(2) - (T*t/r - 5*math.pi/4 - math.sqrt(2))*(-r*math.sqrt(2)))
roll = (t - (rsqr2 + 5.0*math.pi*r/4.0 + r/4)/T)*2*math.pi*T/(r)
elseif (t < (rsqr2 + 5.0*math.pi*r/4.0 + r)/T) then
pos = makeVector3f(r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2))*(-r*math.sqrt(2)), 0, -r -r/math.sqrt(2) - (T*t/r - 5*math.pi/4 - math.sqrt(2))*(-r*math.sqrt(2)))
roll = math.pi
elseif (t < (rsqr2 + 5.0*math.pi*r/4.0 + r + 3*math.pi*r/2.0)/T) then
pos = makeVector3f(r*math.cos(-T*t/r +5.0*math.pi/4.0 + math.sqrt(2) + 1 - math.pi/4) - r*math.sqrt(2.0), 0, -r - r*math.sin(-T*t/r +5.0*math.pi/4.0 + math.sqrt(2) + 1 - math.pi/4))
roll = math.pi
elseif (t < (rsqr2 + 5.0*math.pi*r/4.0 + r + 3*math.pi*r/2.0 + r/4.0)/T) then
pos = makeVector3f(-r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2) - 1 - 3*math.pi/2)*(r*math.sqrt(2)), 0, -r -r/math.sqrt(2) - (T*t/r - 5*math.pi/4 - math.sqrt(2) - 1 - 3*math.pi/2.0 )*(-r*math.sqrt(2)))
roll = math.pi
elseif (t < (rsqr2 + 5.0*math.pi*r/4.0 + r + 3*math.pi*r/2.0 + 3*r/4.0)/T) then
pos = makeVector3f(-r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2) - 1 - 3*math.pi/2)*(r*math.sqrt(2)), 0, -r -r/math.sqrt(2) - (T*t/r - 5*math.pi/4 - math.sqrt(2) - 1 - 3*math.pi/2.0 )*(-r*math.sqrt(2)))
roll = math.pi +(t - (rsqr2 + 5.0*math.pi*r/4.0 + r + 3*math.pi*r/2.0 + r/4.0)/T)*2 *math.pi*T/(r)
elseif (t < (rsqr2 + 5.0*math.pi*r/4.0 + r + 3*math.pi*r/2.0 + r)/T) then
pos = makeVector3f(-r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2) - 1 - 3*math.pi/2)*(r*math.sqrt(2)), 0, -r -r/math.sqrt(2) - (T*t/r - 5*math.pi/4 - math.sqrt(2) - 1 - 3*math.pi/2.0 )*(-r*math.sqrt(2)))
roll = 0.0
else
pos = makeVector3f(r*math.cos(T*t/r - (6*math.pi/4.0 + math.sqrt(2) +2 ))+rsqr2, 0, -r - r*math.sin(T*t/r - (6*math.pi/4.0 + math.sqrt(2) +2 )))
roll = 0.0
end
return pos, roll
end
function half_reverse_cuban_eight(t, r, arg2, arg3, arg4)
local T = 3.0*math.pi*r/2.0 + 2*r*math.sqrt(2) + r
local trsqr2 = 2*r*math.sqrt(2)
local pos
local roll
if(t < (math.pi*r/4)/T) then
pos = makeVector3f(r*math.cos(-T*(1-t)/r +5.0*math.pi/4.0 + 2*math.sqrt(2) + 1 - math.pi/4), 0, -r -r*math.sin(-T*(1-t)/r +5.0*math.pi/4.0 + 2*math.sqrt(2) + 1 - math.pi/4))
roll = 0
elseif (t < (math.pi*r/4 + r/4)/T) then
pos = makeVector3f(3*r/math.sqrt(2) + (T*(1-t)/r - 5*math.pi/4 - 2*math.sqrt(2))*(-r*math.sqrt(2)), 0, -r -r/math.sqrt(2) - (T*(1-t)/r - 5*math.pi/4 - 2*math.sqrt(2))*(-r*math.sqrt(2)))
roll = 0
elseif (t < (math.pi*r/4 + 3*r/4)/T) then
pos = makeVector3f(3*r/math.sqrt(2) + (T*(1-t)/r - 5*math.pi/4 - 2*math.sqrt(2))*(-r*math.sqrt(2)), 0, -r -r/math.sqrt(2) - (T*(1-t)/r - 5*math.pi/4 - 2*math.sqrt(2))*(-r*math.sqrt(2)))
roll = (t - (math.pi*r/4 + r/4)/T)*2*math.pi*T/(r)
elseif (t < (math.pi*r/4 + r)/T) then
pos = makeVector3f(3*r/math.sqrt(2) + (T*(1-t)/r - 5*math.pi/4 - 2*math.sqrt(2))*(-r*math.sqrt(2)), 0, -r -r/math.sqrt(2) - (T*(1-t)/r - 5*math.pi/4 - 2*math.sqrt(2))*(-r*math.sqrt(2)))
roll = math.pi
elseif (t < (3*math.pi*r/2 + r) /T) then
pos = makeVector3f(r*math.cos(T*(1-t)/r - 2*math.sqrt(2) - math.pi/2)+trsqr2, 0, -r - r*math.sin(T*(1-t)/r - 2*math.sqrt(2) - math.pi/2))
roll = math.pi
else
pos = makeVector3f(T*(1-t), 0.0, 0.0)
roll = math.pi
end
return pos, roll
end
function humpty_bump(t, r, h, arg3, arg4)
assert(h >= 2*r)
local T = 2*(math.pi*r + h - r)
local l = h - 2*r
local pos
local roll
if (t < (math.pi*r/2)/T) then
pos = makeVector3f(r*math.cos(T*t/r - math.pi/2), 0, -r -r*math.sin(T*t/r - math.pi/2))
roll = 0
elseif (t < (math.pi*r/2 + l/4)/T) then
pos = makeVector3f(r, 0, -r -(T*t - r*math.pi/2))
roll = 0
elseif (t < (math.pi*r/2 + 3*l/4)/T) then
pos = makeVector3f(r, 0, -r -(T*t - r*math.pi/2))
roll = (t - (math.pi*r/2 + l/4)/T)*2*math.pi*T/l
elseif (t < (math.pi*r/2 + l)/T) then
pos = makeVector3f(r, 0, -r -(T*t - r*math.pi/2))
roll = math.pi
elseif (t < (3*math.pi*r/2 + l)/T) then
pos = makeVector3f(2*r + r*math.cos(T*t/r - 3*math.pi/2 - l/r), 0, -r-l +r*math.sin(T*t/r - 3*math.pi/2 - l/r))
roll = math.pi
elseif (t < (3*math.pi*r/2 + 2*l)/T) then
pos = makeVector3f(3*r,0, -r -l + (T*t - 3*r*math.pi/2.0 -l))
roll = math.pi
elseif (t < (2*math.pi*r + 2*l)/T) then
2022-10-24 00:05:56 -03:00
pos = makeVector3f(2*r + r*math.cos(T*t/r - 3*math.pi/2 -2*l/r),0, -r + r*math.sin(T*t/r - 3*math.pi/2 -2*l/r))
roll = math.pi
else
pos = makeVector3f(2*r -(T*t - 2*r*math.pi - 2*l), 0, 0)
roll = math.pi
end
return pos, roll
end
function scale_figure_eight(t, r, bank_angle, arg3, arg4)
local r_sign = sgn(r)
assert(math.abs(r_sign) > 0.1)
local r = math.abs(r)
local T = 4*math.pi + 2
local pos
local roll
if (t < (math.pi/2)/T) then
pos = makeVector3f(r*math.cos(T*t - math.pi/2), r_sign*(r +r*math.sin(T*t - math.pi/2)), 0)
roll = math.rad(bank_angle)
elseif (t < (5*math.pi/2)/T) then
pos = makeVector3f(2*r + r*math.cos(T*t + math.pi/2), r_sign*(r -r*math.sin(T*t + math.pi/2)), 0)
roll = -math.rad(bank_angle)
elseif (t < (4*math.pi)/T) then
pos = makeVector3f(r*math.cos(T*t - math.pi/2), r_sign*(r + r*math.sin(T*t - math.pi/2)), 0)
roll = math.rad(bank_angle)
else
pos = makeVector3f(r*(T*t - 4*math.pi), 0, 0)
roll = 0
end
return pos, roll
end
function test_height_control(t, length, arg2, arg3, arg4)
if t < 0.25 then
return makeVector3f(t*length, 0.0, 0.0), 0.0
elseif t < 0.5 then
return makeVector3f(t*length, 0.0, -10.0), 0.0
elseif t < 0.75 then
return makeVector3f(t*length, 0.0, -20.0), 0.0
else
return makeVector3f(t*length, 0.0, -30.0), 0.0
end
end
function test_lane_change(t, length, arg2, arg3, arg4)
if t < 0.25 then
return makeVector3f(t*length, 0.0, 0.0), 0.0
elseif t < 0.5 then
return makeVector3f(t*length, 10.0, 0.0), 0.0
elseif t < 0.75 then
return makeVector3f(t*length, 20.0, 0.0), 0.0
else
return makeVector3f(t*length, 30.0, 0.0), 0.0
end
end
function path_straight_roll(t, length, num_rolls, arg3, arg4)
local vec = makeVector3f(t*length, 0.0, 0.0)
return vec, t*num_rolls*2*math.pi
end
--todo: change y coordinate to z for vertical box
--function aerobatic_box(t, l, w, r):
function horizontal_rectangle(t, total_length, total_width, r, arg4)
local r_sign = sgn(r)
assert(math.abs(r_sign) > 0.1)
local r = math.abs(r)
gcs:send_text(0,string.format("rect %f %f", r_sign, r))
local bank_angle = math.abs(arg4)
local l = total_length - 2*r
local w = total_width - 2*r
local perim = 2*l + 2*w + 2*math.pi*r
local pos
if (t < 0.5*l/(perim)) then
pos = makeVector3f(perim*t, 0.0, 0.0)
elseif (t < (0.5*l + 0.5*math.pi*r)/perim) then
pos = makeVector3f(0.5*l + r*math.sin((perim*t - 0.5*l)/r), r_sign*(r*(1 - math.cos((perim*t - 0.5*l)/r))), 0.0)
elseif (t < (0.5*l + 0.5*math.pi*r + w)/perim) then
pos = makeVector3f(0.5*l + r, r_sign*(r + (perim*t - (0.5*l + 0.5*math.pi*r))), 0.0)
elseif(t < (0.5*l + math.pi*r + w)/perim) then
pos = makeVector3f(0.5*l + r + r*(-1 + math.cos((perim*t - (0.5*l + 0.5*math.pi*r + w))/r)), r_sign*(r + w + r*(math.sin((perim*t - (0.5*l + 0.5*math.pi*r + w))/r))), 0.0)
elseif(t < (1.5*l + math.pi*r + w)/perim) then
pos = makeVector3f(0.5*l - (perim*t - (0.5*l + math.pi*r + w)), r_sign*(2*r + w), 0.0)
elseif(t < (1.5*l + 1.5*math.pi*r + w)/perim) then
pos = makeVector3f(-0.5*l + r*(-math.sin((perim*t - (1.5*l + math.pi*r + w))/r)), r_sign*(2*r + w + r*(-1 + math.cos((perim*t - (1.5*l + math.pi*r + w))/r))), 0.0)
elseif(t < (1.5*l + 1.5*math.pi*r + 2*w)/perim) then
pos = makeVector3f(-0.5*l -r, r_sign*(w + r - (perim*t - (1.5*l + 1.5*math.pi*r + w))), 0.0)
elseif(t < (1.5*l + 2*math.pi*r + 2*w)/perim) then
pos = makeVector3f(-0.5*l -r + r*(1 - math.cos((perim*t - (1.5*l + 1.5*math.pi*r + 2*w))/r)), r_sign*(r + r*(-math.sin((perim*t - (1.5*l + 1.5*math.pi*r + 2*w))/r))), 0.0)
else
pos = makeVector3f(-0.5*l + perim*t - (1.5*l + 2*math.pi*r + 2*w), 0.0, 0.0)
end
return pos, math.rad(bank_angle)
end
function vertical_aerobatic_box(t, total_length, total_width, r, arg4)
--gcs:send_text(0, string.format("t val: %f", t))
local q = Quaternion()
q:from_euler(-math.rad(90), 0, 0)
local point, angle = horizontal_rectangle(t, total_length, total_width, math.abs(r), arg4)
q:earth_to_body(point)
return point, angle
end
---------------------------------------------------
function target_groundspeed()
return ahrs:get_EAS2TAS()*TRIM_ARSPD_CM:get()*0.01
end
--Estimate the length of the path in metres
function path_length(path_f, arg1, arg2, arg3, arg4)
local dt = 0.01
local total = 0.0
for i = 0, math.floor(1.0/dt) do
local t = i*dt
local t2 = t + dt
local v1 = path_f(t, arg1, arg2, arg3, arg4)
local v2 = path_f(t2, arg1, arg2, arg3, arg4)
local dv = v2-v1
total = total + dv:length()
end
return total
end
--args:
-- path_f: path function returning position
-- t: normalised [0, 1] time
-- arg1, arg2: arguments for path function
-- orientation: maneuver frame orientation
--returns: requested position in maneuver frame
function rotate_path(path_f, t, arg1, arg2, arg3, arg4, orientation, offset)
point, angle = path_f(t, arg1, arg2, arg3, arg4)
orientation:earth_to_body(point)
--TODO: rotate angle?
return point+offset, angle
end
--args:
-- dt: sample time
-- cutoff_freq: cutoff frequency for low pass filter, in Hz
--returns: alpha value required to implement LP filter
function calc_lowpass_alpha_dt(dt, cutoff_freq)
if dt <= 0.0 or cutoff_freq <= 0.0 then
return 1.0
end
local rc = 1.0/(2.0*3.14159265*cutoff_freq)
local drc = dt/(dt+rc)
if drc < 0.0 then
return 0.0
end
if drc > 1.0 then
return 1.0
end
return drc
end
--Wrapper to construct a Vector3f{x, y, z} from (x, y, z)
function makeVector3f(x, y, z)
local vec = Vector3f()
vec:x(x)
vec:y(y)
vec:z(z)
return vec
end
--Given vec1, vec2, returns an (rotation axis, angle) tuple that rotates vec1 to be parallel to vec2
--If vec1 and vec2 are already parallel, returns a zero vector and zero angle
--Note that the rotation will not be unique.
function vectors_to_rotation(vector1, vector2)
axis = vector1:cross(vector2)
if axis:length() < 0.00001 then
local vec = Vector3f()
vec:x(1)
return vec, 0
end
axis:normalize()
angle = vector1:angle(vector2)
return axis, angle
end
--returns Quaternion
function vectors_to_rotation_w_roll(vector1, vector2, roll)
axis, angle = vectors_to_rotation(vector1, vector2)
local vector_rotation = Quaternion()
vector_rotation:from_axis_angle(axis, angle)
local roll_rotation = Quaternion()
roll_rotation:from_euler(roll, 0, 0)
local total_rot = vector_rotation*roll_rotation
return to_axis_and_angle(total_rot)
end
--Given vec1, vec2, returns an angular velocity tuple that rotates vec1 to be parallel to vec2
--If vec1 and vec2 are already parallel, returns a zero vector and zero angle
function vectors_to_angular_rate(vector1, vector2, time_constant)
axis, angle = vectors_to_rotation(vector1, vector2)
angular_velocity = angle/time_constant
return axis:scale(angular_velocity)
end
function vectors_to_angular_rate_w_roll(vector1, vector2, time_constant, roll)
axis, angle = vectors_to_rotation_w_roll(vector1, vector2, roll)
angular_velocity = angle/time_constant
return axis:scale(angular_velocity)
end
function to_axis_and_angle(quat)
local axis_angle = Vector3f()
quat:to_axis_angle(axis_angle)
angle = axis_angle:length()
if(angle < 0.00001) then
return makeVector3f(1.0, 0.0, 0.0), 0.0
end
return axis_angle:scale(1.0/angle), angle
end
function test_axis_and_angle()
local quat = Quaternion()
quat:q1(1.0)
local axis, angle = to_axis_and_angle(quat)
gcs:send_text(0, string.format("axis angle test: %f %f %f %f", axis:x(), axis:y(), axis:z(), angle))
local quat2 = Quaternion()
quat2:q1(math.cos(math.pi/4))
quat2:q2(0)
quat2:q3(0)
quat2:q4(math.sin(math.pi/4))
local axis2, angle2 = to_axis_and_angle(quat2)
gcs:send_text(0, string.format("axis angle test2: %f %f %f %f", axis2:x(), axis2:y(), axis2:z(), angle2))
local quat3 = Quaternion()
quat3:q1(math.cos(math.pi/2))
quat3:q2(0)
quat3:q3(math.sin(math.pi/2))
quat3:q4(0)
local axis3, angle3 = to_axis_and_angle(quat3)
gcs:send_text(0, string.format("axis angle test3: %f %f %f %f", axis3:x(), axis3:y(), axis3:z(), angle3))
end
--Just used this to test the above function, can probably delete now.
function test_angular_rate()
local vector1 = makeVector3f(1.0, 0.0, 0.0)
local vector2 = makeVector3f(1.0, 1.0, 0.0)
local angular_rate = vectors_to_angular_rate(vector1, vector2, 1.0)
gcs:send_text(0, string.format("angular rate: %.1f %.1f %.1f", math.deg(angular_rate:x()), math.deg(angular_rate:y()), math.deg(angular_rate:z())))
end
--projects x onto the othogonal subspace of span(unit_v)
function ortho_proj(x, unit_v)
local temp_x = unit_v:cross(x)
return unit_v:cross(temp_x)
end
--test_angular_rate()
--test_axis_and_angle()
-- function maneuver_to_body(vec)
-- path_var.initial_maneuver_to_earth:earth_to_body(vec)
-- vec = ahrs:earth_to_body(vec)
-- return vec
-- end
--returns body frame angular rate as Vec3f
-- function path_proportional_error_correction(current_pos_ef, target_pos_ef, forward_velocity, target_velocity_ef)
-- if forward_velocity <= MIN_SPEED then
-- return makeVector3f(0.0, 0.0, 0.0)
-- end
-- --time over which to correct position error
-- local time_const_pos_to_vel = POS_TC:get()
-- --time over which to achieve desired velocity
-- local time_const_vel_to_acc = VEL_TC:get()
-- local pos_err_ef = target_pos_ef - current_pos_ef
-- local correction_vel_ef = pos_err_ef:scale(1.0/time_const_pos_to_vel)
-- correction_vel_ef = correction_vel_ef:scale(forward_velocity)
-- local curr_vel_ef = ahrs:get_velocity_NED()
-- local vel_error_ef = correction_vel_ef - curr_vel_ef
-- local acc_err_bf = ahrs:earth_to_body(vel_error_ef):scale(1.0/time_const_vel_to_acc)
-- local ang_vel = makeVector3f(0, -acc_err_bf:z()/forward_velocity, acc_err_bf:y()/forward_velocity)
-- return ang_vel
-- end
-- log a pose from position and quaternion attitude
function log_pose(logname, pos, quat)
logger.write(logname, 'px,py,pz,q1,q2,q3,q4,r,p,y','ffffffffff',
pos:x(),
pos:y(),
pos:z(),
quat:q1(),
quat:q2(),
quat:q3(),
quat:q4(),
math.deg(quat:get_euler_roll()),
math.deg(quat:get_euler_pitch()),
math.deg(quat:get_euler_yaw()))
end
local path_var = {}
path_var.count = 0
path_var.initial_ori = Quaternion()
path_var.initial_maneuver_to_earth = Quaternion()
function do_path(path, initial_yaw_deg, arg1, arg2, arg3, arg4)
local now = millis():tofloat() * 0.001
path_var.count = path_var.count + 1
local target_dt = 1.0/LOOP_RATE
if not running then
running = true
path_var.length = path_length(path, arg1, arg2, arg3, arg4)
path_var.total_rate_rads_ef = makeVector3f(0.0, 0.0, 0.0)
local speed = target_groundspeed()
--assuming constant velocity
path_var.total_time = path_var.length/speed
path_var.last_pos, last_angle = path(0.0, arg1, arg2, arg3, arg4) --position at t0
--deliberately only want yaw component, because the maneuver should be performed relative to the earth, not relative to the initial orientation
path_var.initial_ori:from_euler(0, 0, math.rad(initial_yaw_deg))
path_var.initial_maneuver_to_earth:from_euler(0, 0, -math.rad(initial_yaw_deg))
path_var.initial_ef_pos = ahrs:get_relative_position_NED_origin()
local corrected_position_t0_ef, angle_t0 = rotate_path(path, LOOKAHEAD*target_dt/path_var.total_time,
arg1, arg2, arg3, arg4,
path_var.initial_ori, path_var.initial_ef_pos)
local corrected_position_t1_ef, angle_t1 = rotate_path(path, 2*LOOKAHEAD*target_dt/path_var.total_time,
arg1, arg2, arg3, arg4,
path_var.initial_ori, path_var.initial_ef_pos)
path_var.start_pos = ahrs:get_position()
path_var.path_int = path_var.start_pos:copy()
height_PI.reset()
speed_PI.reset()
path_var.accumulated_orientation_rel_ef = path_var.initial_ori
path_var.time_correction = 0.0
path_var.filtered_angular_velocity = Vector3f()
path_var.start_time = now + target_dt
path_var.last_time = now
path_var.average_dt = target_dt
path_var.scaled_dt = target_dt
path_var.path_t = 0
path_var.target_speed = speed
return true
end
--TODO: dt taken from actual loop rate or just desired loop rate?
--local dt = now - path_var.last_time
--local dt = target_dt
local vel_length = ahrs:get_velocity_NED():length()
local actual_dt = now - path_var.last_time
--path_var.average_dt = 0.98*path_var.average_dt + 0.02*actual_dt
--local scaled_dt = path_var.average_dt--*vel_length/path_var.target_speed
--path_var.scaled_dt = scaled_dt
local local_n_dt = actual_dt/path_var.total_time
path_var.last_time = now
--path_var.path_t = path_var.path_t + scaled_dt/path_var.total_time
--TODO: Fix this exit condition
--local t = path_var.path_t
if path_var.path_t > 1.0 then --done
return false
end
--[[
calculate positions and angles at previous, current and next time steps
--]]
next_target_pos_ef = next_target_pos_ef
local p0, r0 = rotate_path(path, path_var.path_t + 0*local_n_dt,
arg1, arg2, arg3, arg4,
path_var.initial_ori, path_var.initial_ef_pos)
local p1, r1 = rotate_path(path, path_var.path_t + 1*local_n_dt,
arg1, arg2, arg3, arg4,
path_var.initial_ori, path_var.initial_ef_pos)
local p2, r2 = rotate_path(path, path_var.path_t + 2*local_n_dt,
arg1, arg2, arg3, arg4,
path_var.initial_ori, path_var.initial_ef_pos)
local current_measured_pos_ef = ahrs:get_relative_position_NED_origin()
--[[
get tangents to the path
--]]
local tangent1_ef = p1 - p0
local tangent2_ef = p2 - p1
local tv_unit = tangent2_ef:copy()
tv_unit:normalize()
--[[
use actual vehicle velocity to calculate how far along the
path we have progressed
--]]
local v = ahrs:get_velocity_NED()
local path_dist = v:dot(tv_unit)*actual_dt
if path_dist < 0 then
gcs:send_text(0, string.format("aborting"))
return false
end
local path_t_delta = constrain(path_dist/path_var.length, 0.2*local_n_dt, 4*local_n_dt)
path_var.path_t = path_var.path_t + path_t_delta
--[[
recalculate the current path position and angle based on actual delta time
--]]
p2, r2 = rotate_path(path, path_var.path_t + path_t_delta,
arg1, arg2, arg3, arg4,
path_var.initial_ori, path_var.initial_ef_pos)
-- tangents needs to be recalculated
tangent1_ef = p1 - p0
tangent2_ef = p2 - p1
tv_unit = tangent2_ef:copy()
tv_unit:normalize()
-- error in position versus current point on the path
local pos_error_ef = current_measured_pos_ef - p1
--[[
calculate a time correction. We first get the projection of
the position error onto the track. This tells us how far we
are ahead or behind on the track
--]]
local path_dist_err_m = tv_unit:dot(pos_error_ef)
-- normalize against the total path length
local path_err_t = path_dist_err_m / path_var.length
-- don't allow the path to go backwards in time, or faster than twice the actual rate
path_err_t = constrain(path_err_t, -0.9*path_t_delta, 2*path_t_delta)
-- correct time to bring us back into sync
path_var.path_t = path_var.path_t + TIME_CORR_P:get() * path_err_t
--[[
calculation of error correction, calculating acceleration
needed to bring us back on the path, and body rates in pitch and
yaw to achieve those accelerations
--]]
-- component of pos_err perpendicular to the current path tangent
local B = ortho_proj(pos_error_ef, tv_unit)
-- derivative of pos_err perpendicular to the current path tangent, assuming tangent is constant
local B_dot = ortho_proj(v, tv_unit)
-- gains for error correction.
local acc_err_ef = B:scale(ERR_CORR_P:get()) + B_dot:scale(ERR_CORR_D:get())
local acc_err_bf = ahrs:earth_to_body(acc_err_ef)
local TAS = constrain(ahrs:get_EAS2TAS()*ahrs:airspeed_estimate(), 3, 100)
local corr_rate_bf_y_rads = -acc_err_bf:z()/TAS
local corr_rate_bf_z_rads = acc_err_bf:y()/TAS
local cor_ang_vel_bf_rads = makeVector3f(0.0, corr_rate_bf_y_rads, corr_rate_bf_z_rads)
local cor_ang_vel_bf_dps = cor_ang_vel_bf_rads:scale(math.deg(1))
--[[
work out body frame path rate, this is based on two adjacent tangents on the path
--]]
local path_rate_ef_rads = vectors_to_angular_rate(tangent1_ef, tangent2_ef, actual_dt)
local path_rate_ef_dps = path_rate_ef_rads:scale(math.deg(1))
local path_rate_bf_dps = ahrs:earth_to_body(path_rate_ef_dps)
-- set the path roll rate
path_rate_bf_dps:x(math.deg(wrap_pi(r1 - r0)/actual_dt))
--[[
calculate body frame roll rate to achieved the desired roll
angle relative to the maneuver path
--]]
local zero_roll_angle_delta = Quaternion()
zero_roll_angle_delta:from_angular_velocity(path_rate_ef_rads, actual_dt)
path_var.accumulated_orientation_rel_ef = zero_roll_angle_delta*path_var.accumulated_orientation_rel_ef
path_var.accumulated_orientation_rel_ef:normalize()
local mf_axis = makeVector3f(1, 0, 0)
path_var.accumulated_orientation_rel_ef:earth_to_body(mf_axis)
local orientation_rel_mf_with_roll_angle = Quaternion()
orientation_rel_mf_with_roll_angle:from_axis_angle(mf_axis, r1)
orientation_rel_ef_with_roll_angle = orientation_rel_mf_with_roll_angle*path_var.accumulated_orientation_rel_ef
--[[
calculate the error correction for the roll versus the desired roll
--]]
local roll_error = orientation_rel_ef_with_roll_angle*ahrs:get_quaternion():inverse()
roll_error:normalize()
local err_axis_ef, err_angle_rad = to_axis_and_angle(roll_error)
local time_const_roll = ROLL_CORR_TC:get()
local err_angle_rate_ef_rads = err_axis_ef:scale(err_angle_rad/time_const_roll)
local err_angle_rate_bf_dps = ahrs:earth_to_body(err_angle_rate_ef_rads):scale(math.deg(1))
-- zero any non-roll components
err_angle_rate_bf_dps:y(0)
err_angle_rate_bf_dps:z(0)
--[[
total angular rate is sum of path rate, correction rate and roll correction rate
--]]
local tot_ang_vel_bf_dps = path_rate_bf_dps + cor_ang_vel_bf_dps + err_angle_rate_bf_dps
--[[
log POSM is pose-measured, POST is pose-track, POSB is pose-track without the roll
--]]
log_pose('POSM', current_measured_pos_ef, ahrs:get_quaternion())
log_pose('POST', p1, orientation_rel_ef_with_roll_angle)
logger.write('AETM', 'T,Terr','ff',
path_var.path_t,
path_err_t)
logger.write('AERT','Cx,Cy,Cz,Px,Py,Pz,Ex,Tx,Ty,Tz', 'ffffffffff',
cor_ang_vel_bf_dps:x(), cor_ang_vel_bf_dps:y(), cor_ang_vel_bf_dps:z(),
path_rate_bf_dps:x(), path_rate_bf_dps:y(), path_rate_bf_dps:z(),
err_angle_rate_bf_dps:x(),
tot_ang_vel_bf_dps:x(), tot_ang_vel_bf_dps:y(), tot_ang_vel_bf_dps:z())
--log_pose('POSB', p1, path_var.accumulated_orientation_rel_ef)
--[[
run the throttle based speed controller
--]]
local target_speed = target_groundspeed()--TRIM_ARSPD_CM:get()*0.01
throttle = speed_PI.update(target_speed)
throttle = constrain(throttle, 0, 100.0)
vehicle:set_target_throttle_rate_rpy(throttle, tot_ang_vel_bf_dps:x(), tot_ang_vel_bf_dps:y(), tot_ang_vel_bf_dps:z())
return true
end
command_table = {}
command_table[1]={figure_eight, "Figure Eight"}
command_table[2]={loop, "Loop"}
command_table[3]={horizontal_rectangle, "Horizontal Rectangle"}
command_table[4]={climbing_circle, "Climbing Circle"}
command_table[5]={vertical_aerobatic_box, "Vertical Box"}
command_table[6]={banked_circle, "Banked Circle"}
command_table[7]={straight_roll, "Axial Roll"}
command_table[8]={rolling_circle, "Rolling Circle"}
command_table[9]={half_cuban_eight, "Half Cuban Eight"}
command_table[10]={half_reverse_cuban_eight, "Half Reverse Cuban Eight"}
command_table[11]={cuban_eight, "Cuban Eight"}
command_table[12]={humpty_bump, "Humpty Bump"}
command_table[13]={straight_flight, "Straight Flight"}
command_table[14]={scale_figure_eight, "Scale Figure Eight"}
-- get a location structure from a waypoint number
function get_location(i)
local m = mission:get_item(i)
local loc = Location()
loc:lat(m:x())
loc:lng(m:y())
loc:relative_alt(true)
loc:terrain_alt(false)
loc:origin_alt(false)
loc:alt(math.floor(m:z()*100))
return loc
end
-- set wp location
function wp_setloc(wp, loc)
wp:x(loc:lat())
wp:y(loc:lng())
wp:z(loc:alt()*0.01)
end
-- add a waypoint to the end of the mission
function wp_add(loc,ctype,param1,param2)
local wp = mavlink_mission_item_int_t()
wp_setloc(wp,loc)
wp:command(ctype)
local seq = mission:num_commands()
wp:seq(seq)
wp:param1(param1)
wp:param2(param2)
wp:frame(3) -- global position, relative alt
mission:set_item(seq, wp)
end
-- add a NAV_SCRIPT_TIME waypoint to the end of the mission
function wp_add_nav_script(cmdid,arg1,arg2,arg3,arg4)
local wp = mavlink_mission_item_int_t()
wp:command(NAV_SCRIPT_TIME)
local seq = mission:num_commands()
wp:seq(seq)
wp:param1(cmdid)
wp:param2(0) -- timeout
wp:param3(arg1)
wp:param4(arg2)
wp:x(arg3)
wp:y(arg4)
mission:set_item(seq, wp)
end
--[[
create auto mission 1
--]]
function create_auto_mission1()
local N = mission:num_commands()
if N ~= 4 then
gcs:send_text(0,string.format("Auto mission needs takeoff and 2 WPs (got %u)", N))
return
end
local takeoff_m = mission:get_item(1)
if takeoff_m:command() ~= NAV_TAKEOFF then
gcs:send_text(0,string.format("First WP needs to be takeoff"))
return
end
local wp1 = get_location(2)
local wp2 = get_location(3)
local wp_dist = wp1:get_distance(wp2)
local wp_bearing = math.deg(wp1:get_bearing(wp2))
local radius = AUTO_RAD:get()
gcs:send_text(0, string.format("WP Distance %.0fm bearing %.1fdeg", wp_dist, wp_bearing))
-- find mid-point, 25% and 75% points
local wp_mid = wp1:copy()
wp_mid:offset_bearing(wp_bearing, wp_dist*0.5)
local wp_25pct = wp1:copy()
wp_25pct:offset_bearing(wp_bearing, wp_dist*0.25)
local wp_75pct = wp1:copy()
wp_75pct:offset_bearing(wp_bearing, wp_dist*0.75)
gcs:send_text(0,"Adding half cuban eight")
wp_add_nav_script(9, radius, 0, 0, 0)
gcs:send_text(0,"Adding loop")
wp_add(wp_mid, NAV_WAYPOINT, 0, 1)
wp_add_nav_script(2, radius, 0, 0, 0)
gcs:send_text(0,"Adding half reverse cuban eight")
wp_add(wp1, NAV_WAYPOINT, 0, 0)
wp_add_nav_script(10, radius, 0, 0, 0)
gcs:send_text(0,"Adding axial roll")
wp_add(wp_25pct, NAV_WAYPOINT, 0, 1)
wp_add_nav_script(7, wp_dist*0.5, 1, 0, 0)
gcs:send_text(0,"Adding humpty bump")
wp_add(wp2, NAV_WAYPOINT, 0, 1)
wp_add_nav_script(12, radius*0.25, 0.5*radius, 0, 0)
gcs:send_text(0,"Adding cuban eight")
wp_add(wp_mid, NAV_WAYPOINT, 0, 0)
wp_add_nav_script(11, radius, 0, 0, 0)
wp_add(wp1, NAV_WAYPOINT, 0, 0)
end
function create_auto_mission()
if AUTO_MIS:get() == 1 then
create_auto_mission1()
else
gcs:send_text(0, string.format("Unknown auto mission", AUTO_MIS:get()))
end
end
function update()
-- check if we should create a mission
if AUTO_MIS:get() > 0 then
create_auto_mission()
AUTO_MIS:set_and_save(0)
end
id, cmd, arg1, arg2, arg3, arg4 = vehicle:nav_script_time()
if id then
if id ~= last_id then
-- we've started a new command
running = false
last_id = id
repeat_count = 0
initial_yaw_deg = math.deg(ahrs:get_yaw())
gcs:send_text(0, string.format("Starting %s!", command_table[cmd][2] ))
initial_height = ahrs:get_position():alt()*0.01
-- work out yaw between previous WP and next WP
local cnum = mission:get_current_nav_index()
-- find previous nav waypoint
local loc_prev = get_wp_location(cnum-1)
local loc_next = get_wp_location(cnum+1)
local i= cnum-1
while get_wp_location(i):lat() == 0 and get_wp_location(i):lng() == 0 do
i = i-1
loc_prev = get_wp_location(i)
end
-- find next nav waypoint
i = cnum+1
while get_wp_location(i):lat() == 0 and get_wp_location(i):lng() == 0 do
i = i+1
loc_next = get_wp_location(resolve_jump(i))
end
wp_yaw_deg = math.deg(loc_prev:get_bearing(loc_next))
if math.abs(wrap_180(initial_yaw_deg - wp_yaw_deg)) > 90 then
gcs:send_text(0, string.format("Doing turnaround!"))
wp_yaw_deg = wrap_180(wp_yaw_deg + 180)
end
initial_yaw_deg = wp_yaw_deg
end
local done = not do_path(command_table[cmd][1], initial_yaw_deg, arg1, arg2, arg3, arg4)
if done then
vehicle:nav_script_time_done(last_id)
gcs:send_text(0, string.format("Finishing %s!", command_table[cmd][2] ))
running = false
end
else
running = false
end
return update, 1000.0/LOOP_RATE
end
return update()