// @Description: Selects the type of rotor speed control used to determine throttle output to the HeliRSC servo channel when motor interlock is enabled (throttle hold off). RC Passthrough sends the input from the RC Motor Interlock channel as throttle output. External Gov SetPoint sends the RSC SetPoint parameter value as throttle output. Throttle Curve uses the 5 point throttle curve to determine throttle output based on the collective output. AutoThrottle requires a rotor speed sensor, contains an advanced autothrottle governor and is primarily for piston and turbine engines. WARNING: Throttle ramp time and throttle curve MUST be tuned properly using Throttle Curve mode before using AutoThrottle
// @Description: Time in seconds for throttle output (HeliRSC servo) to ramp from ground idle (RSC_IDLE) to flight idle throttle setting when motor interlock is enabled (throttle hold off).
// @Description: Actual time in seconds for the main rotor to reach full speed after motor interlock is enabled (throttle hold off). Must be at least one second longer than the Throttle Ramp Time that is set with RSC_RAMP_TIME. WARNING: For AutoThrottle users with piston and turbine engines it is VERY important to know how long it takes to warm up your engine and reach full rotor speed when throttle switch is turned ON. This timer should be set for at least the amount of time it takes to get your helicopter to full flight power, ready for takeoff. Failure to heed this warning could result in the auto-takeoff mode attempting to lift up into hover before the engine has reached full power, and subsequent loss of control
// @Description: Percentage of normal rotor speed where flight is no longer possible. However currently the rotor runup/rundown is estimated using the RSC_RUNUP_TIME parameter. Estimated rotor speed increases/decreases between 0 (rotor stopped) to 1 (rotor at normal speed) in the RSC_RUNUP_TIME in seconds. This parameter should be set so that the estimated rotor speed goes below critical in approximately 3 seconds. So if you had a 10 second runup time then set RSC_CRITICAL to 70%.
// @Description: Throttle output (HeliRSC Servo) in percent while armed but motor interlock is disabled (throttle hold on). FOR COMBUSTION ENGINES. Sets the engine ground idle throttle percentage with clutch disengaged. This must be set to zero for electric helicopters under most situations. If the ESC has an autorotation window this can be set to keep the autorotation window open in the ESC. Consult the operating manual for your ESC to set it properly for this purpose
// @Description: This controls the maximum rate at which the throttle output (HeliRSC servo) can change, as a percentage per second. A value of 100 means the throttle can change over its full range in one second. A value of zero gives unlimited slew rate.
// @Description: Sets the throttle output (HeliRSC servo) in percent for the throttle curve at the minimum collective pitch position. The 0 percent collective is defined by H_COL_MIN. Example: if the setup has -2 degree to +10 degree collective pitch setup, this setting would correspond to -2 degree of pitch.
// @Description: Sets the throttle output (HeliRSC servo) in percent for the throttle curve at 25% of full collective travel where he 0 percent collective is defined by H_COL_MIN and 100 percent collective is defined by H_COL_MAX. Example: if the setup has -2 degree to +10 degree collective pitch setup, the total range is 12 degrees. 25% of 12 degrees is 3 degrees, so this setting would correspond to +1 degree of pitch.
// @Description: Sets the throttle output (HeliRSC servo) in percent for the throttle curve at 50% of full collective travel where he 0 percent collective is defined by H_COL_MIN and 100 percent collective is defined by H_COL_MAX. Example: if the setup has -2 degree to +10 degree collective pitch setup, the total range is 12 degrees. 50% of 12 degrees is 6 degrees, so this setting would correspond to +4 degree of pitch.
// @Description: Sets the throttle output (HeliRSC servo) in percent for the throttle curve at 75% of full collective travel where he 0 percent collective is defined by H_COL_MIN and 100 percent collective is defined by H_COL_MAX. Example: if the setup has -2 degree to +10 degree collective pitch setup, the total range is 12 degrees. 75% of 12 degrees is 9 degrees, so this setting would correspond to +7 degree of pitch.
// @Description: Sets the throttle output (HeliRSC servo) in percent for the throttle curve at the minimum collective pitch position. The 100 percent collective is defined by H_COL_MAX. Example: if the setup has -2 degree to +10 degree collective pitch setup, this setting would correspond to +10 degree of pitch.
// @DisplayName: Autorotation Throttle Percentage for External Governor
// @Description: The throttle percentage sent to external governors, signaling to enable fast spool-up, when bailing out of an autorotation. Set 0 to disable. If also using a tail rotor of type DDVP with external governor then this value must lie within the autorotation window of both governors.
// @Description: Adjusts the engine's percentage of torque rise on autothrottle during ramp-up to governor speed. The torque rise will determine how fast the rotor speed will ramp up when the throttle switch is turned on. 30% torque rise is a good starting setting to adjust the autothrottle ramp-in for piston and turbine engines. The sequence of events engaging the governor is as follows: Throttle ramp time will engage the clutch and start the main rotor turning. The collective should be at feather pitch and the throttle curve set to provide at least 50% of normal Rrpm at feather pitch. The autothrottle torque limiter will automatically activate and start accelerating the main rotor. Note that if the engine fails to respond during autothrottle ramp-in to governed speed due to external factors such as the tail rotor suddenly drawing too much torque, or the engine is not running properly, the torque limiter will pause and wait for the condition to clear before proceeding with ramp-in to governor speed. If the autothrottle consistently fails to accelerate the main rotor during ramp-in due to engine tune or other factors, then increase the torque limiter setting. Raising the collective during runup will increase how fast the autothrottle ramps up, but may cause the helicopter to become unstable on the ground due to producing thrust before the rotor reaches full speed. NOTE: Having the throttle ramp time and throttle curve set properly is very important, so these things should be tuned using MODE Throttle Curve before using MODE AutoThrottle
// @Description: Adjusts the autothrottle governor torque compensator that determines how fast the governor will adjust the base torque reference to compensate for changes in density altitude. If Rrpm is low or high by more than 2-5 rpm, increase this setting by 1% at a time until the governor speed matches your Rrpm setting. Setting the compensator too high can result in surging and throttle "hunting". Do not make large adjustments at one time
// @Description: AutoThrottle governor droop response under load, normal settings of 0-50%. Higher value is quicker response to large speed changes due to load but may cause surging. Adjust this to be as aggressive as possible without getting surging or Rrpm over-run when the governor responds to large load changes on the rotor system
// @Description: Feedforward governor gain to throttle response during sudden loading/unloading of the rotor system. If Rrpm drops excessively during full collective climb with the droop response set correctly, increase the governor feedforward. If Rrpm drops excessively under heavy load also inspect the setting for maximum collective pitch to ensure that the pitch setting corresponds to maximum available power from the engine. Setting the maximum pitch to where the rotor draws more power than the engine can produce is called over-pitching and can lead to loss of control. The governor is not able to compensate for over-pitching if the throttle is wide open and the engine can't produce more power to maintain rotor speed. So maximum collective pitch must be matched to available maximum engine power.
// @Description: Will provide a fast idle for engine cooldown by raising the Ground Idle speed setting by 50% for the number of seconds the timer is set for. Can be set up to 120 seconds. A setting of zero disables the fast idle. This feature will only apply after the governor and autothrottle have been engaged (throttle switch on and rotor rpm at least 100% of normal speed). Upon initial startup of the engine after arming, normal Ground Idle is used. It will provide a 50% bump to Ground Idle speed for practice autorotation to ensure the engine doesn't quit. It will provide a 50% bump to Ground Idle speed to cool down a hot engine upon landing. At any time during fast idle, disarming will shut the engine down