Ardupilot2/libraries/AP_NavEKF2/AP_NavEKF2_Measurements.cpp

577 lines
27 KiB
C++
Raw Normal View History

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL/AP_HAL.h>
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_150
#include "AP_NavEKF2.h"
#include "AP_NavEKF2_core.h"
#include <AP_AHRS/AP_AHRS.h>
#include <AP_Vehicle/AP_Vehicle.h>
#include <stdio.h>
extern const AP_HAL::HAL& hal;
/********************************************************
* OPT FLOW AND RANGE FINDER *
********************************************************/
// Read the range finder and take new measurements if available
// Apply a median filter
void NavEKF2_core::readRangeFinder(void)
{
uint8_t midIndex;
uint8_t maxIndex;
uint8_t minIndex;
// get theoretical correct range when the vehicle is on the ground
rngOnGnd = frontend->_rng.ground_clearance_cm() * 0.01f;
// read range finder at 20Hz
// TODO better way of knowing if it has new data
if ((imuSampleTime_ms - lastRngMeasTime_ms) > 50) {
// reset the timer used to control the measurement rate
lastRngMeasTime_ms = imuSampleTime_ms;
// store samples and sample time into a ring buffer if valid
if (frontend->_rng.status() == RangeFinder::RangeFinder_Good) {
rngMeasIndex ++;
if (rngMeasIndex > 2) {
rngMeasIndex = 0;
}
storedRngMeasTime_ms[rngMeasIndex] = imuSampleTime_ms - 25;
storedRngMeas[rngMeasIndex] = frontend->_rng.distance_cm() * 0.01f;
}
// check for three fresh samples
bool sampleFresh[3];
for (uint8_t index = 0; index <= 2; index++) {
sampleFresh[index] = (imuSampleTime_ms - storedRngMeasTime_ms[index]) < 500;
}
// find the median value if we have three fresh samples
if (sampleFresh[0] && sampleFresh[1] && sampleFresh[2]) {
if (storedRngMeas[0] > storedRngMeas[1]) {
minIndex = 1;
maxIndex = 0;
} else {
maxIndex = 0;
minIndex = 1;
}
if (storedRngMeas[2] > storedRngMeas[maxIndex]) {
midIndex = maxIndex;
} else if (storedRngMeas[2] < storedRngMeas[minIndex]) {
midIndex = minIndex;
} else {
midIndex = 2;
}
rangeDataNew.time_ms = storedRngMeasTime_ms[midIndex];
// limit the measured range to be no less than the on-ground range
rangeDataNew.rng = MAX(storedRngMeas[midIndex],rngOnGnd);
rngValidMeaTime_ms = imuSampleTime_ms;
// write data to buffer with time stamp to be fused when the fusion time horizon catches up with it
storedRange.push(rangeDataNew);
} else if (!takeOffDetected) {
// before takeoff we assume on-ground range value if there is no data
rangeDataNew.time_ms = imuSampleTime_ms;
rangeDataNew.rng = rngOnGnd;
rngValidMeaTime_ms = imuSampleTime_ms;
// write data to buffer with time stamp to be fused when the fusion time horizon catches up with it
storedRange.push(rangeDataNew);
}
}
}
// write the raw optical flow measurements
// this needs to be called externally.
void NavEKF2_core::writeOptFlowMeas(uint8_t &rawFlowQuality, Vector2f &rawFlowRates, Vector2f &rawGyroRates, uint32_t &msecFlowMeas)
{
// The raw measurements need to be optical flow rates in radians/second averaged across the time since the last update
// The PX4Flow sensor outputs flow rates with the following axis and sign conventions:
// A positive X rate is produced by a positive sensor rotation about the X axis
// A positive Y rate is produced by a positive sensor rotation about the Y axis
// This filter uses a different definition of optical flow rates to the sensor with a positive optical flow rate produced by a
// negative rotation about that axis. For example a positive rotation of the flight vehicle about its X (roll) axis would produce a negative X flow rate
flowMeaTime_ms = imuSampleTime_ms;
// calculate bias errors on flow sensor gyro rates, but protect against spikes in data
// reset the accumulated body delta angle and time
// don't do the calculation if not enough time lapsed for a reliable body rate measurement
if (delTimeOF > 0.01f) {
flowGyroBias.x = 0.99f * flowGyroBias.x + 0.01f * constrain_float((rawGyroRates.x - delAngBodyOF.x/delTimeOF),-0.1f,0.1f);
flowGyroBias.y = 0.99f * flowGyroBias.y + 0.01f * constrain_float((rawGyroRates.y - delAngBodyOF.y/delTimeOF),-0.1f,0.1f);
delAngBodyOF.zero();
delTimeOF = 0.0f;
}
// check for takeoff if relying on optical flow and zero measurements until takeoff detected
// if we haven't taken off - constrain position and velocity states
if (frontend->_fusionModeGPS == 3) {
detectOptFlowTakeoff();
}
// calculate rotation matrices at mid sample time for flow observations
stateStruct.quat.rotation_matrix(Tbn_flow);
Tnb_flow = Tbn_flow.transposed();
// don't use data with a low quality indicator or extreme rates (helps catch corrupt sensor data)
if ((rawFlowQuality > 0) && rawFlowRates.length() < 4.2f && rawGyroRates.length() < 4.2f) {
// correct flow sensor rates for bias
omegaAcrossFlowTime.x = rawGyroRates.x - flowGyroBias.x;
omegaAcrossFlowTime.y = rawGyroRates.y - flowGyroBias.y;
// write uncorrected flow rate measurements that will be used by the focal length scale factor estimator
// note correction for different axis and sign conventions used by the px4flow sensor
ofDataNew.flowRadXY = - rawFlowRates; // raw (non motion compensated) optical flow angular rate about the X axis (rad/sec)
// write flow rate measurements corrected for body rates
ofDataNew.flowRadXYcomp.x = ofDataNew.flowRadXY.x + omegaAcrossFlowTime.x;
ofDataNew.flowRadXYcomp.y = ofDataNew.flowRadXY.y + omegaAcrossFlowTime.y;
// record time last observation was received so we can detect loss of data elsewhere
flowValidMeaTime_ms = imuSampleTime_ms;
// estimate sample time of the measurement
ofDataNew.time_ms = imuSampleTime_ms - frontend->_flowDelay_ms - frontend->flowTimeDeltaAvg_ms/2;
// Correct for the average intersampling delay due to the filter updaterate
ofDataNew.time_ms -= localFilterTimeStep_ms/2;
// Prevent time delay exceeding age of oldest IMU data in the buffer
ofDataNew.time_ms = MAX(ofDataNew.time_ms,imuDataDelayed.time_ms);
// Save data to buffer
storedOF.push(ofDataNew);
// Check for data at the fusion time horizon
flowDataToFuse = storedOF.recall(ofDataDelayed, imuDataDelayed.time_ms);
}
}
/********************************************************
* MAGNETOMETER *
********************************************************/
// return magnetometer offsets
// return true if offsets are valid
bool NavEKF2_core::getMagOffsets(Vector3f &magOffsets) const
{
// compass offsets are valid if we have finalised magnetic field initialisation and magnetic field learning is not prohibited and primary compass is valid
if (firstMagYawInit && (frontend->_magCal != 2) && _ahrs->get_compass()->healthy(magSelectIndex)) {
magOffsets = _ahrs->get_compass()->get_offsets(magSelectIndex) - stateStruct.body_magfield*1000.0f;
return true;
} else {
magOffsets = _ahrs->get_compass()->get_offsets(magSelectIndex);
return false;
}
}
// check for new magnetometer data and update store measurements if available
void NavEKF2_core::readMagData()
{
// If we are a vehicle with a sideslip constraint to aid yaw estimation and we have timed out on our last avialable
// magnetometer, then declare the magnetometers as failed for this flight
uint8_t maxCount = _ahrs->get_compass()->get_count();
if (allMagSensorsFailed || (magTimeout && assume_zero_sideslip() && magSelectIndex >= maxCount-1 && inFlight)) {
allMagSensorsFailed = true;
return;
}
// do not accept new compass data faster than 14Hz (nominal rate is 10Hz) to prevent high processor loading
// because magnetometer fusion is an expensive step and we could overflow the FIFO buffer
if (use_compass() && _ahrs->get_compass()->last_update_usec() - lastMagUpdate_us > 70000) {
// If the magnetometer has timed out (been rejected too long) we find another magnetometer to use if available
// Don't do this if we are on the ground because there can be magnetic interference and we need to know if there is a problem
// before taking off. Don't do this within the first 30 seconds from startup because the yaw error could be due to large yaw gyro bias affsets
if (magTimeout && (maxCount > 1) && !onGround && imuSampleTime_ms - ekfStartTime_ms > 30000) {
// search through the list of magnetometers
for (uint8_t i=1; i<maxCount; i++) {
uint8_t tempIndex = magSelectIndex + i;
// loop back to the start index if we have exceeded the bounds
if (tempIndex >= maxCount) {
tempIndex -= maxCount;
}
// if the magnetometer is allowed to be used for yaw and has a different index, we start using it
if (_ahrs->get_compass()->use_for_yaw(tempIndex) && tempIndex != magSelectIndex) {
magSelectIndex = tempIndex;
hal.console->printf("EKF2 IMU%u switching to compass %u\n",(unsigned)imu_index,magSelectIndex);
// reset the timeout flag and timer
magTimeout = false;
lastHealthyMagTime_ms = imuSampleTime_ms;
// zero the learned magnetometer bias states
stateStruct.body_magfield.zero();
// clear the measurement buffer
storedMag.reset();
}
}
}
// store time of last measurement update
lastMagUpdate_us = _ahrs->get_compass()->last_update_usec(magSelectIndex);
// estimate of time magnetometer measurement was taken, allowing for delays
magDataNew.time_ms = imuSampleTime_ms - frontend->magDelay_ms;
// Correct for the average intersampling delay due to the filter updaterate
magDataNew.time_ms -= localFilterTimeStep_ms/2;
// read compass data and scale to improve numerical conditioning
magDataNew.mag = _ahrs->get_compass()->get_field(magSelectIndex) * 0.001f;
// check for consistent data between magnetometers
consistentMagData = _ahrs->get_compass()->consistent();
// save magnetometer measurement to buffer to be fused later
storedMag.push(magDataNew);
}
}
/********************************************************
* Inertial Measurements *
********************************************************/
/*
* Read IMU delta angle and delta velocity measurements and downsample to 100Hz
* for storage in the data buffers used by the EKF. If the IMU data arrives at
* lower rate than 100Hz, then no downsampling or upsampling will be performed.
* Downsampling is done using a method that does not introduce coning or sculling
* errors.
*/
void NavEKF2_core::readIMUData()
{
const AP_InertialSensor &ins = _ahrs->get_ins();
// average IMU sampling rate
dtIMUavg = ins.get_loop_delta_t();
// the imu sample time is used as a common time reference throughout the filter
imuSampleTime_ms = AP_HAL::millis();
// use the nominated imu or primary if not available
if (ins.use_accel(imu_index)) {
readDeltaVelocity(imu_index, imuDataNew.delVel, imuDataNew.delVelDT);
} else {
readDeltaVelocity(ins.get_primary_accel(), imuDataNew.delVel, imuDataNew.delVelDT);
}
// Get delta angle data from primary gyro or primary if not available
if (ins.use_gyro(imu_index)) {
readDeltaAngle(imu_index, imuDataNew.delAng);
} else {
readDeltaAngle(ins.get_primary_gyro(), imuDataNew.delAng);
}
imuDataNew.delAngDT = MAX(ins.get_delta_angle_dt(imu_index),1.0e-4f);
// Get current time stamp
imuDataNew.time_ms = imuSampleTime_ms;
// remove gyro scale factor errors
imuDataNew.delAng.x = imuDataNew.delAng.x * stateStruct.gyro_scale.x;
imuDataNew.delAng.y = imuDataNew.delAng.y * stateStruct.gyro_scale.y;
imuDataNew.delAng.z = imuDataNew.delAng.z * stateStruct.gyro_scale.z;
// remove sensor bias errors
imuDataNew.delAng -= stateStruct.gyro_bias * (imuDataNew.delAngDT / dtEkfAvg);
imuDataNew.delVel.z -= stateStruct.accel_zbias * (imuDataNew.delVelDT / dtEkfAvg);
// Accumulate the measurement time interval for the delta velocity and angle data
imuDataDownSampledNew.delAngDT += imuDataNew.delAngDT;
imuDataDownSampledNew.delVelDT += imuDataNew.delVelDT;
// Rotate quaternon atitude from previous to new and normalise.
// Accumulation using quaternions prevents introduction of coning errors due to downsampling
Quaternion deltaQuat;
deltaQuat.rotate(imuDataNew.delAng);
imuQuatDownSampleNew = imuQuatDownSampleNew*deltaQuat;
imuQuatDownSampleNew.normalize();
// Rotate the accumulated delta velocity into the new frame of reference created by the latest delta angle
// This prevents introduction of sculling errors due to downsampling
Matrix3f deltaRotMat;
deltaQuat.inverse().rotation_matrix(deltaRotMat);
imuDataDownSampledNew.delVel = deltaRotMat*imuDataDownSampledNew.delVel;
// accumulate the latest delta velocity
imuDataDownSampledNew.delVel += imuDataNew.delVel;
// Keep track of the number of IMU frames since the last state prediction
framesSincePredict++;
// If 10msec has elapsed, and the frontend has allowed us to start a new predict cycle, then store the accumulated IMU data
// to be used by the state prediction, ignoring the frontend permission if more than 20msec has lapsed
if ((dtIMUavg*(float)framesSincePredict >= 0.01f && startPredictEnabled) || (dtIMUavg*(float)framesSincePredict >= 0.02f)) {
// convert the accumulated quaternion to an equivalent delta angle
imuQuatDownSampleNew.to_axis_angle(imuDataDownSampledNew.delAng);
// Time stamp the data
imuDataDownSampledNew.time_ms = imuSampleTime_ms;
// Write data to the FIFO IMU buffer
storedIMU.push_youngest_element(imuDataDownSampledNew);
// zero the accumulated IMU data and quaternion
imuDataDownSampledNew.delAng.zero();
imuDataDownSampledNew.delVel.zero();
imuDataDownSampledNew.delAngDT = 0.0f;
imuDataDownSampledNew.delVelDT = 0.0f;
imuQuatDownSampleNew[0] = 1.0f;
imuQuatDownSampleNew[3] = imuQuatDownSampleNew[2] = imuQuatDownSampleNew[1] = 0.0f;
// reset the counter used to let the frontend know how many frames have elapsed since we started a new update cycle
framesSincePredict = 0;
// set the flag to let the filter know it has new IMU data nad needs to run
runUpdates = true;
} else {
// we don't have new IMU data in the buffer so don't run filter updates on this time step
runUpdates = false;
}
// extract the oldest available data from the FIFO buffer
imuDataDelayed = storedIMU.pop_oldest_element();
float minDT = 0.1f*dtEkfAvg;
imuDataDelayed.delAngDT = MAX(imuDataDelayed.delAngDT,minDT);
imuDataDelayed.delVelDT = MAX(imuDataDelayed.delVelDT,minDT);
}
// read the delta velocity and corresponding time interval from the IMU
// return false if data is not available
bool NavEKF2_core::readDeltaVelocity(uint8_t ins_index, Vector3f &dVel, float &dVel_dt) {
const AP_InertialSensor &ins = _ahrs->get_ins();
if (ins_index < ins.get_accel_count()) {
ins.get_delta_velocity(ins_index,dVel);
dVel_dt = MAX(ins.get_delta_velocity_dt(ins_index),1.0e-4f);
return true;
}
return false;
}
/********************************************************
* Global Position Measurement *
********************************************************/
// check for new valid GPS data and update stored measurement if available
void NavEKF2_core::readGpsData()
{
// check for new GPS data
// do not accept data at a faster rate than 14Hz to avoid overflowing the FIFO buffer
if (_ahrs->get_gps().last_message_time_ms() - lastTimeGpsReceived_ms > 70) {
if (_ahrs->get_gps().status() >= AP_GPS::GPS_OK_FIX_3D) {
// report GPS fix status
gpsCheckStatus.bad_fix = false;
// store fix time from previous read
secondLastGpsTime_ms = lastTimeGpsReceived_ms;
// get current fix time
lastTimeGpsReceived_ms = _ahrs->get_gps().last_message_time_ms();
// estimate when the GPS fix was valid, allowing for GPS processing and other delays
// ideally we should be using a timing signal from the GPS receiver to set this time
gpsDataNew.time_ms = lastTimeGpsReceived_ms - frontend->_gpsDelay_ms;
// Correct for the average intersampling delay due to the filter updaterate
gpsDataNew.time_ms -= localFilterTimeStep_ms/2;
// Prevent time delay exceeding age of oldest IMU data in the buffer
gpsDataNew.time_ms = MAX(gpsDataNew.time_ms,imuDataDelayed.time_ms);
// read the NED velocity from the GPS
gpsDataNew.vel = _ahrs->get_gps().velocity();
// Use the speed accuracy from the GPS if available, otherwise set it to zero.
// Apply a decaying envelope filter with a 5 second time constant to the raw speed accuracy data
float alpha = constrain_float(0.0002f * (lastTimeGpsReceived_ms - secondLastGpsTime_ms),0.0f,1.0f);
gpsSpdAccuracy *= (1.0f - alpha);
float gpsSpdAccRaw;
if (!_ahrs->get_gps().speed_accuracy(gpsSpdAccRaw)) {
gpsSpdAccuracy = 0.0f;
} else {
gpsSpdAccuracy = MAX(gpsSpdAccuracy,gpsSpdAccRaw);
}
// check if we have enough GPS satellites and increase the gps noise scaler if we don't
if (_ahrs->get_gps().num_sats() >= 6 && (PV_AidingMode == AID_ABSOLUTE)) {
gpsNoiseScaler = 1.0f;
} else if (_ahrs->get_gps().num_sats() == 5 && (PV_AidingMode == AID_ABSOLUTE)) {
gpsNoiseScaler = 1.4f;
} else { // <= 4 satellites or in constant position mode
gpsNoiseScaler = 2.0f;
}
// Check if GPS can output vertical velocity and set GPS fusion mode accordingly
if (_ahrs->get_gps().have_vertical_velocity() && frontend->_fusionModeGPS == 0) {
useGpsVertVel = true;
} else {
useGpsVertVel = false;
}
// Monitor quality of the GPS velocity data before and after alignment using separate checks
if (PV_AidingMode != AID_ABSOLUTE) {
// Pre-alignment checks
gpsGoodToAlign = calcGpsGoodToAlign();
} else {
// Post-alignment checks
calcGpsGoodForFlight();
}
// Read the GPS locaton in WGS-84 lat,long,height coordinates
const struct Location &gpsloc = _ahrs->get_gps().location();
// Set the EKF origin and magnetic field declination if not previously set and GPS checks have passed
if (gpsGoodToAlign && !validOrigin) {
setOrigin();
// Now we know the location we have an estimate for the magnetic field declination and adjust the earth field accordingly
alignMagStateDeclination();
// Set the height of the NED origin to height of baro height datum relative to GPS height datum'
EKF_origin.alt = gpsloc.alt - baroDataNew.hgt;
}
// convert GPS measurements to local NED and save to buffer to be fused later if we have a valid origin
if (validOrigin) {
gpsDataNew.pos = location_diff(EKF_origin, gpsloc);
gpsDataNew.hgt = 0.01f * (gpsloc.alt - EKF_origin.alt);
storedGPS.push(gpsDataNew);
// declare GPS available for use
gpsNotAvailable = false;
}
// Commence GPS aiding when able to
if (readyToUseGPS() && PV_AidingMode != AID_ABSOLUTE) {
PV_AidingMode = AID_ABSOLUTE;
// Initialise EKF position and velocity states to last GPS measurement
ResetPosition();
ResetVelocity();
}
} else {
// report GPS fix status
gpsCheckStatus.bad_fix = true;
}
}
// We need to handle the case where GPS is lost for a period of time that is too long to dead-reckon
// If that happens we need to put the filter into a constant position mode, reset the velocity states to zero
// and use the last estimated position as a synthetic GPS position
// check if we can use opticalflow as a backup
bool optFlowBackupAvailable = (flowDataValid && !hgtTimeout);
// Set GPS time-out threshold depending on whether we have an airspeed sensor to constrain drift
uint16_t gpsRetryTimeout_ms = useAirspeed() ? frontend->gpsRetryTimeUseTAS_ms : frontend->gpsRetryTimeNoTAS_ms;
// Set the time that copters will fly without a GPS lock before failing the GPS and switching to a non GPS mode
uint16_t gpsFailTimeout_ms = optFlowBackupAvailable ? frontend->gpsFailTimeWithFlow_ms : gpsRetryTimeout_ms;
// If we haven't received GPS data for a while and we are using it for aiding, then declare the position and velocity data as being timed out
if (imuSampleTime_ms - lastTimeGpsReceived_ms > gpsFailTimeout_ms) {
2015-10-29 03:57:56 -03:00
// Let other processes know that GPS is not available and that a timeout has occurred
posTimeout = true;
velTimeout = true;
gpsNotAvailable = true;
2015-10-29 03:57:56 -03:00
// If we are totally reliant on GPS for navigation, then we need to switch to a non-GPS mode of operation
// If we don't have airspeed or sideslip assumption or optical flow to constrain drift, then go into constant position mode.
// If we can do optical flow nav (valid flow data and height above ground estimate), then go into flow nav mode.
if (PV_AidingMode == AID_ABSOLUTE && !useAirspeed() && !assume_zero_sideslip()) {
if (optFlowBackupAvailable) {
// we can do optical flow only nav
frontend->_fusionModeGPS = 3;
2015-10-29 03:57:56 -03:00
PV_AidingMode = AID_RELATIVE;
} else {
// store the current position
lastKnownPositionNE.x = stateStruct.position.x;
lastKnownPositionNE.y = stateStruct.position.y;
2015-10-29 03:57:56 -03:00
// put the filter into constant position mode
PV_AidingMode = AID_NONE;
2015-10-29 03:57:56 -03:00
// Reset the velocity and position states
ResetVelocity();
ResetPosition();
// Reset the normalised innovation to avoid false failing bad fusion tests
2015-10-29 03:57:56 -03:00
velTestRatio = 0.0f;
posTestRatio = 0.0f;
}
}
}
}
// read the delta angle and corresponding time interval from the IMU
// return false if data is not available
bool NavEKF2_core::readDeltaAngle(uint8_t ins_index, Vector3f &dAng) {
const AP_InertialSensor &ins = _ahrs->get_ins();
if (ins_index < ins.get_gyro_count()) {
ins.get_delta_angle(ins_index,dAng);
return true;
}
return false;
}
/********************************************************
* Height Measurements *
********************************************************/
// check for new pressure altitude measurement data and update stored measurement if available
void NavEKF2_core::readBaroData()
{
// check to see if baro measurement has changed so we know if a new measurement has arrived
// do not accept data at a faster rate than 14Hz to avoid overflowing the FIFO buffer
if (frontend->_baro.get_last_update() - lastBaroReceived_ms > 70) {
baroDataNew.hgt = frontend->_baro.get_altitude();
// If we are in takeoff mode, the height measurement is limited to be no less than the measurement at start of takeoff
// This prevents negative baro disturbances due to copter downwash corrupting the EKF altitude during initial ascent
if (isAiding && getTakeoffExpected()) {
baroDataNew.hgt = MAX(baroDataNew.hgt, meaHgtAtTakeOff);
}
// time stamp used to check for new measurement
lastBaroReceived_ms = frontend->_baro.get_last_update();
// estimate of time height measurement was taken, allowing for delays
baroDataNew.time_ms = lastBaroReceived_ms - frontend->_hgtDelay_ms;
// Correct for the average intersampling delay due to the filter updaterate
baroDataNew.time_ms -= localFilterTimeStep_ms/2;
// Prevent time delay exceeding age of oldest IMU data in the buffer
baroDataNew.time_ms = MAX(baroDataNew.time_ms,imuDataDelayed.time_ms);
// save baro measurement to buffer to be fused later
storedBaro.push(baroDataNew);
}
}
// calculate filtered offset between baro height measurement and EKF height estimate
// offset should be subtracted from baro measurement to match filter estimate
// offset is used to enable reversion to baro if alternate height data sources fail
void NavEKF2_core::calcFiltBaroOffset()
{
// Apply a first order LPF with spike protection
baroHgtOffset += 0.1f * constrain_float(baroDataDelayed.hgt + stateStruct.position.z - baroHgtOffset, -5.0f, 5.0f);
}
/********************************************************
* Air Speed Measurements *
********************************************************/
// check for new airspeed data and update stored measurements if available
void NavEKF2_core::readAirSpdData()
{
// if airspeed reading is valid and is set by the user to be used and has been updated then
// we take a new reading, convert from EAS to TAS and set the flag letting other functions
// know a new measurement is available
const AP_Airspeed *aspeed = _ahrs->get_airspeed();
if (aspeed &&
aspeed->use() &&
aspeed->last_update_ms() != timeTasReceived_ms) {
tasDataNew.tas = aspeed->get_airspeed() * aspeed->get_EAS2TAS();
timeTasReceived_ms = aspeed->last_update_ms();
tasDataNew.time_ms = timeTasReceived_ms - frontend->tasDelay_ms;
// Correct for the average intersampling delay due to the filter update rate
tasDataNew.time_ms -= localFilterTimeStep_ms/2;
// Save data into the buffer to be fused when the fusion time horizon catches up with it
storedTAS.push(tasDataNew);
}
// Check the buffer for measurements that have been overtaken by the fusion time horizon and need to be fused
tasDataToFuse = storedTAS.recall(tasDataDelayed,imuDataDelayed.time_ms);
}
#endif // HAL_CPU_CLASS