Ardupilot2/libraries/AP_NavEKF2/AP_NavEKF2_Measurements.cpp

708 lines
29 KiB
C++
Raw Normal View History

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL/AP_HAL.h>
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_150
/*
optionally turn down optimisation for debugging
*/
// #pragma GCC optimize("O0")
#include "AP_NavEKF2.h"
#include "AP_NavEKF2_core.h"
#include <AP_AHRS/AP_AHRS.h>
#include <AP_Vehicle/AP_Vehicle.h>
#include <stdio.h>
extern const AP_HAL::HAL& hal;
/********************************************************
* OPT FLOW AND RANGE FINDER *
********************************************************/
// Read the range finder and take new measurements if available
// Read at 20Hz and apply a median filter
void NavEKF2_core::readRangeFinder(void)
{
uint8_t midIndex;
uint8_t maxIndex;
uint8_t minIndex;
// get theoretical correct range when the vehicle is on the ground
rngOnGnd = _rng.ground_clearance_cm() * 0.01f;
if (_rng.status() == RangeFinder::RangeFinder_Good && (imuSampleTime_ms - lastRngMeasTime_ms) > 50) {
// store samples and sample time into a ring buffer
rngMeasIndex ++;
if (rngMeasIndex > 2) {
rngMeasIndex = 0;
}
storedRngMeasTime_ms[rngMeasIndex] = imuSampleTime_ms;
storedRngMeas[rngMeasIndex] = _rng.distance_cm() * 0.01f;
// check for three fresh samples and take median
bool sampleFresh[3];
for (uint8_t index = 0; index <= 2; index++) {
sampleFresh[index] = (imuSampleTime_ms - storedRngMeasTime_ms[index]) < 500;
}
if (sampleFresh[0] && sampleFresh[1] && sampleFresh[2]) {
if (storedRngMeas[0] > storedRngMeas[1]) {
minIndex = 1;
maxIndex = 0;
} else {
maxIndex = 0;
minIndex = 1;
}
if (storedRngMeas[2] > storedRngMeas[maxIndex]) {
midIndex = maxIndex;
} else if (storedRngMeas[2] < storedRngMeas[minIndex]) {
midIndex = minIndex;
} else {
midIndex = 2;
}
rngMea = max(storedRngMeas[midIndex],rngOnGnd);
newDataRng = true;
rngValidMeaTime_ms = imuSampleTime_ms;
} else if (onGround) {
// if on ground and no return, we assume on ground range
rngMea = rngOnGnd;
newDataRng = true;
rngValidMeaTime_ms = imuSampleTime_ms;
} else {
newDataRng = false;
}
lastRngMeasTime_ms = imuSampleTime_ms;
}
}
// write the raw optical flow measurements
// this needs to be called externally.
void NavEKF2_core::writeOptFlowMeas(uint8_t &rawFlowQuality, Vector2f &rawFlowRates, Vector2f &rawGyroRates, uint32_t &msecFlowMeas)
{
// The raw measurements need to be optical flow rates in radians/second averaged across the time since the last update
// The PX4Flow sensor outputs flow rates with the following axis and sign conventions:
// A positive X rate is produced by a positive sensor rotation about the X axis
// A positive Y rate is produced by a positive sensor rotation about the Y axis
// This filter uses a different definition of optical flow rates to the sensor with a positive optical flow rate produced by a
// negative rotation about that axis. For example a positive rotation of the flight vehicle about its X (roll) axis would produce a negative X flow rate
flowMeaTime_ms = imuSampleTime_ms;
// calculate bias errors on flow sensor gyro rates, but protect against spikes in data
// reset the accumulated body delta angle and time
// don't do the calculation if not enough time lapsed for a reliable body rate measurement
if (delTimeOF > 0.01f) {
flowGyroBias.x = 0.99f * flowGyroBias.x + 0.01f * constrain_float((rawGyroRates.x - delAngBodyOF.x/delTimeOF),-0.1f,0.1f);
flowGyroBias.y = 0.99f * flowGyroBias.y + 0.01f * constrain_float((rawGyroRates.y - delAngBodyOF.y/delTimeOF),-0.1f,0.1f);
delAngBodyOF.zero();
delTimeOF = 0.0f;
}
// check for takeoff if relying on optical flow and zero measurements until takeoff detected
// if we haven't taken off - constrain position and velocity states
if (frontend._fusionModeGPS == 3) {
detectOptFlowTakeoff();
}
// calculate rotation matrices at mid sample time for flow observations
stateStruct.quat.rotation_matrix(Tbn_flow);
Tnb_flow = Tbn_flow.transposed();
// don't use data with a low quality indicator or extreme rates (helps catch corrupt sensor data)
if ((rawFlowQuality > 0) && rawFlowRates.length() < 4.2f && rawGyroRates.length() < 4.2f) {
// correct flow sensor rates for bias
omegaAcrossFlowTime.x = rawGyroRates.x - flowGyroBias.x;
omegaAcrossFlowTime.y = rawGyroRates.y - flowGyroBias.y;
// write uncorrected flow rate measurements that will be used by the focal length scale factor estimator
// note correction for different axis and sign conventions used by the px4flow sensor
ofDataNew.flowRadXY = - rawFlowRates; // raw (non motion compensated) optical flow angular rate about the X axis (rad/sec)
// write flow rate measurements corrected for body rates
ofDataNew.flowRadXYcomp.x = ofDataNew.flowRadXY.x + omegaAcrossFlowTime.x;
ofDataNew.flowRadXYcomp.y = ofDataNew.flowRadXY.y + omegaAcrossFlowTime.y;
// record time last observation was received so we can detect loss of data elsewhere
flowValidMeaTime_ms = imuSampleTime_ms;
// estimate sample time of the measurement
ofDataNew.time_ms = imuSampleTime_ms - frontend._flowDelay_ms - frontend.flowTimeDeltaAvg_ms/2;
// Save data to buffer
StoreOF();
// Check for data at the fusion time horizon
newDataFlow = RecallOF();
}
}
// store OF data in a history array
void NavEKF2_core::StoreOF()
{
if (ofStoreIndex >= OBS_BUFFER_LENGTH) {
ofStoreIndex = 0;
}
storedOF[ofStoreIndex] = ofDataNew;
ofStoreIndex += 1;
}
// return newest un-used optical flow data that has fallen behind the fusion time horizon
// if no un-used data is available behind the fusion horizon, return false
bool NavEKF2_core::RecallOF()
{
of_elements dataTemp;
of_elements dataTempZero;
dataTempZero.time_ms = 0;
uint32_t temp_ms = 0;
for (uint8_t i=0; i<OBS_BUFFER_LENGTH; i++) {
dataTemp = storedOF[i];
// find a measurement older than the fusion time horizon that we haven't checked before
if (dataTemp.time_ms != 0 && dataTemp.time_ms <= imuDataDelayed.time_ms) {
// zero the time stamp so we won't use it again
storedOF[i]=dataTempZero;
// Find the most recent non-stale measurement that meets the time horizon criteria
if (((imuDataDelayed.time_ms - dataTemp.time_ms) < 500) && dataTemp.time_ms > temp_ms) {
ofDataDelayed = dataTemp;
temp_ms = dataTemp.time_ms;
}
}
}
if (temp_ms != 0) {
return true;
} else {
return false;
}
}
/********************************************************
* MAGNETOMETER *
********************************************************/
// return magnetometer offsets
// return true if offsets are valid
bool NavEKF2_core::getMagOffsets(Vector3f &magOffsets) const
{
// compass offsets are valid if we have finalised magnetic field initialisation and magnetic field learning is not prohibited and primary compass is valid
if (secondMagYawInit && (frontend._magCal != 2) && _ahrs->get_compass()->healthy(0)) {
magOffsets = _ahrs->get_compass()->get_offsets(0) - stateStruct.body_magfield*1000.0f;
return true;
} else {
magOffsets = _ahrs->get_compass()->get_offsets(0);
return false;
}
}
// check for new magnetometer data and update store measurements if available
void NavEKF2_core::readMagData()
{
if (use_compass() && _ahrs->get_compass()->last_update_usec() != lastMagUpdate_ms) {
// store time of last measurement update
lastMagUpdate_ms = _ahrs->get_compass()->last_update_usec();
// estimate of time magnetometer measurement was taken, allowing for delays
magMeasTime_ms = imuSampleTime_ms - frontend.magDelay_ms;
// read compass data and scale to improve numerical conditioning
magDataNew.mag = _ahrs->get_compass()->get_field() * 0.001f;
// check for consistent data between magnetometers
consistentMagData = _ahrs->get_compass()->consistent();
// check if compass offsets have been changed and adjust EKF bias states to maintain consistent innovations
if (_ahrs->get_compass()->healthy(0)) {
Vector3f nowMagOffsets = _ahrs->get_compass()->get_offsets(0);
bool changeDetected = (!is_equal(nowMagOffsets.x,lastMagOffsets.x) || !is_equal(nowMagOffsets.y,lastMagOffsets.y) || !is_equal(nowMagOffsets.z,lastMagOffsets.z));
// Ignore bias changes before final mag field and yaw initialisation, as there may have been a compass calibration
if (changeDetected && secondMagYawInit) {
stateStruct.body_magfield.x += (nowMagOffsets.x - lastMagOffsets.x) * 0.001f;
stateStruct.body_magfield.y += (nowMagOffsets.y - lastMagOffsets.y) * 0.001f;
stateStruct.body_magfield.z += (nowMagOffsets.z - lastMagOffsets.z) * 0.001f;
}
lastMagOffsets = nowMagOffsets;
}
// save magnetometer measurement to buffer to be fused later
magDataNew.time_ms = magMeasTime_ms;
StoreMag();
}
}
// store magnetometer data in a history array
void NavEKF2_core::StoreMag()
{
if (magStoreIndex >= OBS_BUFFER_LENGTH) {
magStoreIndex = 0;
}
storedMag[magStoreIndex] = magDataNew;
magStoreIndex += 1;
}
// return newest un-used magnetometer data that has fallen behind the fusion time horizon
// if no un-used data is available behind the fusion horizon, return false
bool NavEKF2_core::RecallMag()
{
mag_elements dataTemp;
mag_elements dataTempZero;
dataTempZero.time_ms = 0;
uint32_t temp_ms = 0;
for (uint8_t i=0; i<OBS_BUFFER_LENGTH; i++) {
dataTemp = storedMag[i];
// find a measurement older than the fusion time horizon that we haven't checked before
if (dataTemp.time_ms != 0 && dataTemp.time_ms <= imuDataDelayed.time_ms) {
// zero the time stamp so we won't use it again
storedMag[i]=dataTempZero;
// Find the most recent non-stale measurement that meets the time horizon criteria
if (((imuDataDelayed.time_ms - dataTemp.time_ms) < 500) && dataTemp.time_ms > temp_ms) {
magDataDelayed = dataTemp;
temp_ms = dataTemp.time_ms;
}
}
}
if (temp_ms != 0) {
return true;
} else {
return false;
}
}
/********************************************************
* Inertial Measurements *
********************************************************/
// update IMU delta angle and delta velocity measurements
void NavEKF2_core::readIMUData()
{
const AP_InertialSensor &ins = _ahrs->get_ins();
// average IMU sampling rate
dtIMUavg = 1.0f/ins.get_sample_rate();
// the imu sample time is used as a common time reference throughout the filter
imuSampleTime_ms = hal.scheduler->millis();
// Get delta velocity data
readDeltaVelocity(ins.get_primary_accel(), imuDataNew.delVel, imuDataNew.delVelDT);
// Get delta angle data
readDeltaAngle(ins.get_primary_gyro(), imuDataNew.delAng);
imuDataNew.delAngDT = max(ins.get_delta_time(),1.0e-4f);
// get current time stamp
imuDataNew.time_ms = imuSampleTime_ms;
// save data in the FIFO buffer
StoreIMU();
// extract the oldest available data from the FIFO buffer
imuDataDelayed = storedIMU[fifoIndexDelayed];
}
// store imu in the FIFO
void NavEKF2_core::StoreIMU()
{
fifoIndexDelayed = fifoIndexNow;
fifoIndexNow = fifoIndexNow + 1;
if (fifoIndexNow >= IMU_BUFFER_LENGTH) {
fifoIndexNow = 0;
}
storedIMU[fifoIndexNow] = imuDataNew;
}
// reset the stored imu history and store the current value
void NavEKF2_core::StoreIMU_reset()
{
// write current measurement to entire table
for (uint8_t i=0; i<IMU_BUFFER_LENGTH; i++) {
storedIMU[i] = imuDataNew;
}
imuDataDelayed = imuDataNew;
fifoIndexDelayed = fifoIndexNow+1;
if (fifoIndexDelayed >= IMU_BUFFER_LENGTH) {
fifoIndexDelayed = 0;
}
}
// recall IMU data from the FIFO
void NavEKF2_core::RecallIMU()
{
imuDataDelayed = storedIMU[fifoIndexDelayed];
}
bool NavEKF2_core::readDeltaVelocity(uint8_t ins_index, Vector3f &dVel, float &dVel_dt) {
const AP_InertialSensor &ins = _ahrs->get_ins();
if (ins_index < ins.get_accel_count()) {
ins.get_delta_velocity(ins_index,dVel);
dVel_dt = max(ins.get_delta_velocity_dt(ins_index),1.0e-4f);
return true;
}
return false;
}
/********************************************************
* Global Position Measurement *
********************************************************/
// check for new valid GPS data and update stored measurement if available
void NavEKF2_core::readGpsData()
{
// check for new GPS data
if (_ahrs->get_gps().last_message_time_ms() != lastTimeGpsReceived_ms) {
if (_ahrs->get_gps().status() >= AP_GPS::GPS_OK_FIX_3D) {
// report GPS fix status
gpsCheckStatus.bad_fix = false;
// store fix time from previous read
secondLastGpsTime_ms = lastTimeGpsReceived_ms;
// get current fix time
lastTimeGpsReceived_ms = _ahrs->get_gps().last_message_time_ms();
// estimate when the GPS fix was valid, allowing for GPS processing and other delays
// ideally we should be using a timing signal from the GPS receiver to set this time
gpsDataNew.time_ms = lastTimeGpsReceived_ms - frontend._gpsDelay_ms;
// read the NED velocity from the GPS
gpsDataNew.vel = _ahrs->get_gps().velocity();
// Use the speed accuracy from the GPS if available, otherwise set it to zero.
// Apply a decaying envelope filter with a 5 second time constant to the raw speed accuracy data
float alpha = constrain_float(0.0002f * (lastTimeGpsReceived_ms - secondLastGpsTime_ms),0.0f,1.0f);
gpsSpdAccuracy *= (1.0f - alpha);
float gpsSpdAccRaw;
if (!_ahrs->get_gps().speed_accuracy(gpsSpdAccRaw)) {
gpsSpdAccuracy = 0.0f;
} else {
gpsSpdAccuracy = max(gpsSpdAccuracy,gpsSpdAccRaw);
}
// check if we have enough GPS satellites and increase the gps noise scaler if we don't
if (_ahrs->get_gps().num_sats() >= 6 && (PV_AidingMode == AID_ABSOLUTE)) {
gpsNoiseScaler = 1.0f;
} else if (_ahrs->get_gps().num_sats() == 5 && (PV_AidingMode == AID_ABSOLUTE)) {
gpsNoiseScaler = 1.4f;
} else { // <= 4 satellites or in constant position mode
gpsNoiseScaler = 2.0f;
}
// Check if GPS can output vertical velocity and set GPS fusion mode accordingly
if (_ahrs->get_gps().have_vertical_velocity() && frontend._fusionModeGPS == 0) {
useGpsVertVel = true;
} else {
useGpsVertVel = false;
}
// Monitor quality of the GPS velocity data before and after alignment using separate checks
if (PV_AidingMode != AID_ABSOLUTE) {
// Pre-alignment checks
gpsQualGood = calcGpsGoodToAlign();
} else {
// Post-alignment checks
calcGpsGoodForFlight();
}
// read latitutde and longitude from GPS and convert to local NE position relative to the stored origin
// If we don't have an origin, then set it to the current GPS coordinates
const struct Location &gpsloc = _ahrs->get_gps().location();
if (validOrigin) {
gpsDataNew.pos = location_diff(EKF_origin, gpsloc);
} else if (gpsQualGood) {
// Set the NE origin to the current GPS position
setOrigin();
// Now we know the location we have an estimate for the magnetic field declination and adjust the earth field accordingly
alignMagStateDeclination();
// Set the height of the NED origin to height of baro height datum relative to GPS height datum'
EKF_origin.alt = gpsloc.alt - baroDataNew.hgt;
// We are by definition at the origin at the instant of alignment so set NE position to zero
gpsDataNew.pos.zero();
// If GPS useage isn't explicitly prohibited, we switch to absolute position mode
if (isAiding && frontend._fusionModeGPS != 3) {
PV_AidingMode = AID_ABSOLUTE;
// Initialise EKF position and velocity states
ResetPosition();
ResetVelocity();
}
}
// calculate a position offset which is applied to NE position and velocity wherever it is used throughout code to allow GPS position jumps to be accommodated gradually
decayGpsOffset();
// save measurement to buffer to be fused later
StoreGPS();
// declare GPS available for use
gpsNotAvailable = false;
} else {
// report GPS fix status
gpsCheckStatus.bad_fix = true;
}
}
// We need to handle the case where GPS is lost for a period of time that is too long to dead-reckon
// If that happens we need to put the filter into a constant position mode, reset the velocity states to zero
// and use the last estimated position as a synthetic GPS position
// check if we can use opticalflow as a backup
bool optFlowBackupAvailable = (flowDataValid && !hgtTimeout);
// Set GPS time-out threshold depending on whether we have an airspeed sensor to constrain drift
uint16_t gpsRetryTimeout_ms = useAirspeed() ? frontend.gpsRetryTimeUseTAS_ms : frontend.gpsRetryTimeNoTAS_ms;
// Set the time that copters will fly without a GPS lock before failing the GPS and switching to a non GPS mode
uint16_t gpsFailTimeout_ms = optFlowBackupAvailable ? frontend.gpsFailTimeWithFlow_ms : gpsRetryTimeout_ms;
// If we haven't received GPS data for a while and we are using it for aiding, then declare the position and velocity data as being timed out
if (imuSampleTime_ms - lastTimeGpsReceived_ms > gpsFailTimeout_ms) {
// Let other processes know that GPS i snota vailable and that a timeout has occurred
posTimeout = true;
velTimeout = true;
gpsNotAvailable = true;
// If we are currently reliying on GPS for navigation, then we need to switch to a non-GPS mode of operation
if (PV_AidingMode == AID_ABSOLUTE) {
// If we don't have airspeed or sideslip assumption or optical flow to constrain drift, then go into constant position mode.
// If we can do optical flow nav (valid flow data and height above ground estimate), then go into flow nav mode.
if (!useAirspeed() && !assume_zero_sideslip()) {
if (optFlowBackupAvailable) {
// we can do optical flow only nav
frontend._fusionModeGPS = 3;
PV_AidingMode = AID_RELATIVE;
} else {
// store the current position
lastKnownPositionNE.x = stateStruct.position.x;
lastKnownPositionNE.y = stateStruct.position.y;
// put the filter into constant position mode
PV_AidingMode = AID_NONE;
// reset all glitch states
gpsPosGlitchOffsetNE.zero();
gpsVelGlitchOffset.zero();
// Reset the velocity and position states
ResetVelocity();
ResetPosition();
// Reset the normalised innovation to avoid false failing the bad position fusion test
velTestRatio = 0.0f;
posTestRatio = 0.0f;
}
}
}
}
// If not aiding we synthesise the GPS measurements at the last known position
if (PV_AidingMode == AID_NONE) {
if (imuSampleTime_ms - gpsDataNew.time_ms > 200) {
gpsDataNew.pos.x = lastKnownPositionNE.x;
gpsDataNew.pos.y = lastKnownPositionNE.y;
gpsDataNew.time_ms = imuSampleTime_ms-frontend._gpsDelay_ms;
// save measurement to buffer to be fused later
StoreGPS();
}
}
}
// store GPS data in a history array
void NavEKF2_core::StoreGPS()
{
if (gpsStoreIndex >= OBS_BUFFER_LENGTH) {
gpsStoreIndex = 0;
}
storedGPS[gpsStoreIndex] = gpsDataNew;
gpsStoreIndex += 1;
}
// return newest un-used GPS data that has fallen behind the fusion time horizon
// if no un-used data is available behind the fusion horizon, return false
bool NavEKF2_core::RecallGPS()
{
gps_elements dataTemp;
gps_elements dataTempZero;
dataTempZero.time_ms = 0;
uint32_t temp_ms = 0;
for (uint8_t i=0; i<OBS_BUFFER_LENGTH; i++) {
dataTemp = storedGPS[i];
// find a measurement older than the fusion time horizon that we haven't checked before
if (dataTemp.time_ms != 0 && dataTemp.time_ms <= imuDataDelayed.time_ms) {
// zero the time stamp so we won't use it again
storedGPS[i]=dataTempZero;
// Find the most recent non-stale measurement that meets the time horizon criteria
if (((imuDataDelayed.time_ms - dataTemp.time_ms) < 500) && dataTemp.time_ms > temp_ms) {
gpsDataDelayed = dataTemp;
temp_ms = dataTemp.time_ms;
}
}
}
if (temp_ms != 0) {
return true;
} else {
return false;
}
}
bool NavEKF2_core::readDeltaAngle(uint8_t ins_index, Vector3f &dAng) {
const AP_InertialSensor &ins = _ahrs->get_ins();
if (ins_index < ins.get_gyro_count()) {
ins.get_delta_angle(ins_index,dAng);
return true;
}
return false;
}
// decay GPS horizontal position offset to close to zero at a rate of 1 m/s for copters and 5 m/s for planes
// limit radius to a maximum of 50m
void NavEKF2_core::decayGpsOffset()
{
float offsetDecaySpd;
if (assume_zero_sideslip()) {
offsetDecaySpd = 5.0f;
} else {
offsetDecaySpd = 1.0f;
}
float lapsedTime = 0.001f*float(imuSampleTime_ms - lastDecayTime_ms);
lastDecayTime_ms = imuSampleTime_ms;
float offsetRadius = pythagorous2(gpsPosGlitchOffsetNE.x, gpsPosGlitchOffsetNE.y);
// decay radius if larger than offset decay speed multiplied by lapsed time (plus a margin to prevent divide by zero)
if (offsetRadius > (offsetDecaySpd * lapsedTime + 0.1f)) {
// Calculate the GPS velocity offset required. This is necessary to prevent the position measurement being rejected for inconsistency when the radius is being pulled back in.
gpsVelGlitchOffset = -gpsPosGlitchOffsetNE*offsetDecaySpd/offsetRadius;
// calculate scale factor to be applied to both offset components
float scaleFactor = constrain_float((offsetRadius - offsetDecaySpd * lapsedTime), 0.0f, 50.0f) / offsetRadius;
gpsPosGlitchOffsetNE.x *= scaleFactor;
gpsPosGlitchOffsetNE.y *= scaleFactor;
} else {
gpsVelGlitchOffset.zero();
gpsPosGlitchOffsetNE.zero();
}
}
/********************************************************
* Height Measurements *
********************************************************/
// check for new altitude measurement data and update stored measurement if available
void NavEKF2_core::readHgtData()
{
// check to see if baro measurement has changed so we know if a new measurement has arrived
if (_baro.get_last_update() != lastHgtReceived_ms) {
// Don't use Baro height if operating in optical flow mode as we use range finder instead
if (frontend._fusionModeGPS == 3 && frontend._altSource == 1) {
if ((imuSampleTime_ms - rngValidMeaTime_ms) < 2000) {
// adjust range finder measurement to allow for effect of vehicle tilt and height of sensor
baroDataNew.hgt = max(rngMea * Tnb_flow.c.z, rngOnGnd);
// calculate offset to baro data that enables baro to be used as a backup
// filter offset to reduce effect of baro noise and other transient errors on estimate
baroHgtOffset = 0.1f * (_baro.get_altitude() + stateStruct.position.z) + 0.9f * baroHgtOffset;
} else if (isAiding && takeOffDetected) {
// we have lost range finder measurements and are in optical flow flight
// use baro measurement and correct for baro offset - failsafe use only as baro will drift
baroDataNew.hgt = max(_baro.get_altitude() - baroHgtOffset, rngOnGnd);
} else {
// If we are on ground and have no range finder reading, assume the nominal on-ground height
baroDataNew.hgt = rngOnGnd;
// calculate offset to baro data that enables baro to be used as a backup
// filter offset to reduce effect of baro noise and other transient errors on estimate
baroHgtOffset = 0.1f * (_baro.get_altitude() + stateStruct.position.z) + 0.9f * baroHgtOffset;
}
} else {
// Normal operation is to use baro measurement
baroDataNew.hgt = _baro.get_altitude();
}
// filtered baro data used to provide a reference for takeoff
// it is is reset to last height measurement on disarming in performArmingChecks()
if (!getTakeoffExpected()) {
const float gndHgtFiltTC = 0.5f;
const float dtBaro = frontend.hgtAvg_ms*1.0e-3f;
float alpha = constrain_float(dtBaro / (dtBaro+gndHgtFiltTC),0.0f,1.0f);
meaHgtAtTakeOff += (baroDataDelayed.hgt-meaHgtAtTakeOff)*alpha;
} else if (isAiding && getTakeoffExpected()) {
// If we are in takeoff mode, the height measurement is limited to be no less than the measurement at start of takeoff
// This prevents negative baro disturbances due to copter downwash corrupting the EKF altitude during initial ascent
baroDataNew.hgt = max(baroDataNew.hgt, meaHgtAtTakeOff);
}
// time stamp used to check for new measurement
lastHgtReceived_ms = _baro.get_last_update();
// estimate of time height measurement was taken, allowing for delays
hgtMeasTime_ms = lastHgtReceived_ms - frontend._hgtDelay_ms;
// save baro measurement to buffer to be fused later
baroDataNew.time_ms = hgtMeasTime_ms;
StoreBaro();
}
}
// store baro in a history array
void NavEKF2_core::StoreBaro()
{
if (baroStoreIndex >= OBS_BUFFER_LENGTH) {
baroStoreIndex = 0;
}
storedBaro[baroStoreIndex] = baroDataNew;
baroStoreIndex += 1;
}
// return newest un-used baro data that has fallen behind the fusion time horizon
// if no un-used data is available behind the fusion horizon, return false
bool NavEKF2_core::RecallBaro()
{
baro_elements dataTemp;
baro_elements dataTempZero;
dataTempZero.time_ms = 0;
uint32_t temp_ms = 0;
for (uint8_t i=0; i<OBS_BUFFER_LENGTH; i++) {
dataTemp = storedBaro[i];
// find a measurement older than the fusion time horizon that we haven't checked before
if (dataTemp.time_ms != 0 && dataTemp.time_ms <= imuDataDelayed.time_ms) {
// zero the time stamp so we won't use it again
storedBaro[i]=dataTempZero;
// Find the most recent non-stale measurement that meets the time horizon criteria
if (((imuDataDelayed.time_ms - dataTemp.time_ms) < 500) && dataTemp.time_ms > temp_ms) {
baroDataDelayed = dataTemp;
temp_ms = dataTemp.time_ms;
}
}
}
if (temp_ms != 0) {
return true;
} else {
return false;
}
}
/********************************************************
* Air Speed Measurements *
********************************************************/
// check for new airspeed data and update stored measurements if available
void NavEKF2_core::readAirSpdData()
{
// if airspeed reading is valid and is set by the user to be used and has been updated then
// we take a new reading, convert from EAS to TAS and set the flag letting other functions
// know a new measurement is available
const AP_Airspeed *aspeed = _ahrs->get_airspeed();
if (aspeed &&
aspeed->use() &&
aspeed->last_update_ms() != timeTasReceived_ms) {
tasDataNew.tas = aspeed->get_airspeed() * aspeed->get_EAS2TAS();
timeTasReceived_ms = aspeed->last_update_ms();
tasDataNew.time_ms = timeTasReceived_ms - frontend.tasDelay_ms;
newDataTas = true;
StoreTAS();
RecallTAS();
} else {
newDataTas = false;
}
}
#endif // HAL_CPU_CLASS