Ardupilot2/libraries/AC_AttitudeControl/AC_AttitudeControl.h

355 lines
18 KiB
C
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
#pragma once
/// @file AC_AttitudeControl.h
/// @brief ArduCopter attitude control library
#include <AP_Common/AP_Common.h>
#include <AP_Param/AP_Param.h>
#include <AP_Math/AP_Math.h>
#include <AP_InertialSensor/AP_InertialSensor.h>
#include <AP_AHRS/AP_AHRS.h>
#include <AP_Motors/AP_Motors.h>
#include <AC_PID/AC_PID.h>
#include <AC_PID/AC_P.h>
// TODO: change the name or move to AP_Math? eliminate in favor of degrees(100)?
#define AC_ATTITUDE_CONTROL_DEGX100 5729.57795f // constant to convert from radians to centidegrees
#define AC_ATTITUDE_ACCEL_RP_CONTROLLER_MIN_RADSS radians(40.0f) // minimum body-frame acceleration limit for the stability controller (for roll and pitch axis)
#define AC_ATTITUDE_ACCEL_RP_CONTROLLER_MAX_RADSS radians(720.0f) // maximum body-frame acceleration limit for the stability controller (for roll and pitch axis)
#define AC_ATTITUDE_ACCEL_Y_CONTROLLER_MIN_RADSS radians(10.0f) // minimum body-frame acceleration limit for the stability controller (for yaw axis)
#define AC_ATTITUDE_ACCEL_Y_CONTROLLER_MAX_RADSS radians(360.0f) // maximum body-frame acceleration limit for the stability controller (for yaw axis)
#define AC_ATTITUDE_CONTROL_SLEW_YAW_DEFAULT_CDS 1000 // constraint on yaw angle error in degrees. This should lead to maximum turn rate of 10deg/sed * Stab Rate P so by default will be 45deg/sec.
#define AC_ATTITUDE_CONTROL_ACCEL_RP_MAX_DEFAULT_CDSS 110000.0f // default maximum acceleration for roll/pitch axis in centidegrees/sec/sec
#define AC_ATTITUDE_CONTROL_ACCEL_Y_MAX_DEFAULT_CDSS 27000.0f // default maximum acceleration for yaw axis in centidegrees/sec/sec
2014-02-03 00:29:17 -04:00
#define AC_ATTITUDE_RATE_CONTROLLER_TIMEOUT 1.0f // body-frame rate controller timeout in seconds
#define AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX 5000.0f // body-frame rate controller maximum output (for roll-pitch axis)
#define AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX 4500.0f // body-frame rate controller maximum output (for yaw axis)
#define AC_ATTITUDE_ANGLE_YAW_CONTROLLER_OUT_MAX 4500.0f // earth-frame angle controller maximum output (for yaw axis)
#define AC_ATTITUDE_ANGLE_CONTROLLER_ANGLE_MAX 4500.0f // earth-frame angle controller maximum input angle (To-Do: replace with reference to aparm.angle_max)
#define AC_ATTITUDE_RATE_STAB_ROLL_OVERSHOOT_ANGLE_MAX_RAD radians(300.0f) // earth-frame rate stabilize controller's maximum overshoot angle (never limited)
#define AC_ATTITUDE_RATE_STAB_PITCH_OVERSHOOT_ANGLE_MAX_RAD radians(300.0f) // earth-frame rate stabilize controller's maximum overshoot angle (never limited)
#define AC_ATTITUDE_RATE_STAB_YAW_OVERSHOOT_ANGLE_MAX_RAD radians(10.0f) // earth-frame rate stabilize controller's maximum overshoot angle
#define AC_ATTITUDE_RATE_STAB_ACRO_OVERSHOOT_ANGLE_MAX_RAD radians(30.0f) // earth-frame rate stabilize controller's maximum overshoot angle
#define AC_ATTITUDE_100HZ_DT 0.0100f // delta time in seconds for 100hz update rate
#define AC_ATTITUDE_400HZ_DT 0.0025f // delta time in seconds for 400hz update rate
#define AC_ATTITUDE_CONTROL_RATE_BF_FF_DEFAULT 1 // body-frame rate feedforward enabled by default
#define AC_ATTITUDE_CONTROL_ALTHOLD_LEANANGLE_FILT_HZ 1.0f // filter (in hz) of throttle filter used to limit lean angle so that vehicle does not lose altitude
class AC_AttitudeControl {
public:
AC_AttitudeControl( AP_AHRS &ahrs,
const AP_Vehicle::MultiCopter &aparm,
AP_Motors& motors,
AC_P& pi_angle_roll, AC_P& pi_angle_pitch, AC_P& pi_angle_yaw,
AC_PID& pid_rate_roll, AC_PID& pid_rate_pitch, AC_PID& pid_rate_yaw
) :
_dt(AC_ATTITUDE_400HZ_DT),
_angle_boost(0),
_att_ctrl_use_accel_limit(true),
_throttle_in_filt(AC_ATTITUDE_CONTROL_ALTHOLD_LEANANGLE_FILT_HZ),
_ahrs(ahrs),
_aparm(aparm),
_motors(motors),
_p_angle_roll(pi_angle_roll),
_p_angle_pitch(pi_angle_pitch),
_p_angle_yaw(pi_angle_yaw),
_pid_rate_roll(pid_rate_roll),
_pid_rate_pitch(pid_rate_pitch),
_pid_rate_yaw(pid_rate_yaw)
{
AP_Param::setup_object_defaults(this, var_info);
}
// Empty destructor to suppress compiler warning
virtual ~AC_AttitudeControl() {}
// Set_dt - sets time delta in seconds for all controllers (i.e. 100hz = 0.01, 400hz = 0.0025)
void set_dt(float delta_sec);
// Gets the roll acceleration limit in centidegrees/s/s
float get_accel_roll_max() { return _accel_roll_max; }
// Sets the roll acceleration limit in centidegrees/s/s
void set_accel_roll_max(float accel_roll_max) { _accel_roll_max = accel_roll_max; }
// Sets and saves the roll acceleration limit in centidegrees/s/s
void save_accel_roll_max(float accel_roll_max) { _accel_roll_max = accel_roll_max; _accel_roll_max.save(); }
// Sets the pitch acceleration limit in centidegrees/s/s
float get_accel_pitch_max() { return _accel_pitch_max; }
// Sets the pitch acceleration limit in centidegrees/s/s
void set_accel_pitch_max(float accel_pitch_max) { _accel_pitch_max = accel_pitch_max; }
// Sets and saves the pitch acceleration limit in centidegrees/s/s
void save_accel_pitch_max(float accel_pitch_max) { _accel_pitch_max = accel_pitch_max; _accel_pitch_max.save(); }
// Gets the yaw acceleration limit in centidegrees/s/s
float get_accel_yaw_max() { return _accel_yaw_max; }
// Sets the yaw acceleration limit in centidegrees/s/s
void set_accel_yaw_max(float accel_yaw_max) { _accel_yaw_max = accel_yaw_max; }
// Sets and saves the yaw acceleration limit in centidegrees/s/s
void save_accel_yaw_max(float accel_yaw_max) { _accel_yaw_max = accel_yaw_max; _accel_yaw_max.save(); }
// Ensure body-frame rate controller has zero errors to relax rate controller output
void relax_bf_rate_controller();
// Sets yaw target to vehicle heading
void set_yaw_target_to_current_heading() { _att_target_euler_rad.z = _ahrs.yaw; }
// Shifts earth frame yaw target by yaw_shift_cd. yaw_shift_cd should be in centidegrees and is added to the current target heading
void shift_ef_yaw_target(float yaw_shift_cd);
// Command an euler roll and pitch angle and an euler yaw rate with angular velocity feedforward and smoothing
void input_euler_angle_roll_pitch_euler_rate_yaw_smooth(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_rate_cds, float smoothing_gain);
2014-02-19 02:55:45 -04:00
// Command an euler roll and pitch angle and an euler yaw rate
void input_euler_angle_roll_pitch_euler_rate_yaw(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_rate_cds);
// Command an euler roll, pitch and yaw angle
2015-12-02 14:45:34 -04:00
void input_euler_angle_roll_pitch_yaw(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_angle_cd, bool slew_yaw);
// Command an euler roll, pitch, and yaw rate
void input_euler_rate_roll_pitch_yaw(float euler_roll_rate_cds, float euler_pitch_rate_cds, float euler_yaw_rate_cds);
// Command an angular velocity
virtual void input_rate_bf_roll_pitch_yaw(float roll_rate_bf_cds, float pitch_rate_bf_cds, float yaw_rate_bf_cds);
// Command a quaternion attitude and a body-frame angular velocity
void input_att_quat_bf_ang_vel(const Quaternion& att_target_quat, const Vector3f& att_target_ang_vel_rads);
// Run angular velocity controller and send outputs to the motors
virtual void rate_controller_run();
// Convert a 321-intrinsic euler angle derivative to an angular velocity vector
void euler_rate_to_ang_vel(const Vector3f& euler_rad, const Vector3f& euler_rate_rads, Vector3f& ang_vel_rads);
// Convert an angular velocity vector to a 321-intrinsic euler angle derivative
// Returns false if the vehicle is pitched 90 degrees up or down
bool ang_vel_to_euler_rate(const Vector3f& euler_rad, const Vector3f& ang_vel_rads, Vector3f& euler_rate_rads);
// Configures whether the attitude controller should limit the rate demand to constrain angular acceleration
void limit_angle_to_rate_request(bool limit_request) { _att_ctrl_use_accel_limit = limit_request; }
// Return 321-intrinsic euler angles in centidegrees representing the rotation from NED earth frame to the
// attitude controller's reference attitude.
Vector3f get_att_target_euler_cd() const { return _att_target_euler_rad*degrees(100.0f); }
// Return a rotation vector in centidegrees representing the rotation from vehicle body frame to the
// attitude controller's reference attitude.
Vector3f get_att_error_rot_vec_cd() const { return _att_error_rot_vec_rad*degrees(100.0f); }
// Set x-axis angular velocity reference in centidegrees/s
void rate_bf_roll_target(float rate_cds) { _ang_vel_target_rads.x = radians(rate_cds*0.01f); }
// Set y-axis angular velocity reference in centidegrees/s
void rate_bf_pitch_target(float rate_cds) { _ang_vel_target_rads.y = radians(rate_cds*0.01f); }
// Set z-axis angular velocity reference in centidegrees/s
void rate_bf_yaw_target(float rate_cds) { _ang_vel_target_rads.z = radians(rate_cds*0.01f); }
// Return roll rate step size in centidegrees/s that results in maximum output after 4 time steps
float max_rate_step_bf_roll();
// Return pitch rate step size in centidegrees/s that results in maximum output after 4 time steps
float max_rate_step_bf_pitch();
// Return yaw rate step size in centidegrees/s that results in maximum output after 4 time steps
float max_rate_step_bf_yaw();
// Return roll step size in centidegrees that results in maximum output after 4 time steps
float max_angle_step_bf_roll() { return max_rate_step_bf_roll()/_p_angle_roll.kP(); }
// Return pitch step size in centidegrees that results in maximum output after 4 time steps
float max_angle_step_bf_pitch() { return max_rate_step_bf_pitch()/_p_angle_pitch.kP(); }
// Return yaw step size in centidegrees that results in maximum output after 4 time steps
float max_angle_step_bf_yaw() { return max_rate_step_bf_yaw()/_p_angle_yaw.kP(); }
// Return reference angular velocity used in the angular velocity controller
Vector3f rate_bf_targets() const { return _ang_vel_target_rads*degrees(100.0f); }
// Enable or disable body-frame feed forward
void bf_feedforward(bool enable_or_disable) { _rate_bf_ff_enabled = enable_or_disable; }
// Enable or disable body-frame feed forward and save
void bf_feedforward_save(bool enable_or_disable) { _rate_bf_ff_enabled.set_and_save(enable_or_disable); }
// Return body-frame feed forward setting
bool get_bf_feedforward() { return _rate_bf_ff_enabled; }
// Enable or disable body-frame feed forward
void accel_limiting(bool enable_or_disable);
// Set output throttle
void set_throttle_out(float throttle_in, bool apply_angle_boost, float filt_cutoff);
// Set output throttle and disable stabilization
void set_throttle_out_unstabilized(float throttle_in, bool reset_attitude_control, float filt_cutoff);
2014-01-05 23:28:35 -04:00
// Return throttle increase applied for tilt compensation
int16_t angle_boost() const { return _angle_boost; }
// Return tilt angle limit for pilot input that prioritises altitude hold over lean angle
virtual float get_althold_lean_angle_max() const = 0;
// Return configured tilt angle limit in centidegrees/s
float lean_angle_max() const { return _aparm.angle_max; }
// Proportional controller with piecewise sqrt sections to constrain second derivative
static float sqrt_controller(float error, float p, float second_ord_lim);
// User settable parameters
static const struct AP_Param::GroupInfo var_info[];
2014-01-29 09:50:32 -04:00
protected:
// Retrieve a rotation matrix from the vehicle body frame to NED earth frame
void get_rotation_vehicle_to_ned(Matrix3f& m);
// Retrieve a rotation matrix from NED earth frame to the vehicle body frame
void get_rotation_ned_to_vehicle(Matrix3f& m);
// Retrieve a rotation matrix from reference (setpoint) body frame to NED earth frame
void get_rotation_reference_to_ned(Matrix3f& m);
// Retrieve a rotation matrix from NED earth frame to reference (setpoint) body frame
void get_rotation_ned_to_reference(Matrix3f& m);
// Retrieve a rotation matrix from vehicle body frame to reference (setpoint) body frame
void get_rotation_vehicle_to_reference(Matrix3f& m);
// Retrieve a rotation matrix from reference (setpoint) body frame to vehicle body frame
void get_rotation_reference_to_vehicle(Matrix3f& m);
// Command an euler attitude and a body-frame angular velocity
void attitude_controller_run_euler(const Vector3f& att_target_euler_rad, const Vector3f& att_target_ang_vel_rads);
// Command a quaternion attitude and a body-frame angular velocity
void attitude_controller_run_quat(const Quaternion& att_target_quat, const Vector3f& att_target_ang_vel_rads);
// Update _att_target_euler_rad.x by integrating a 321-intrinsic euler roll angle derivative
void update_att_target_roll(float euler_roll_rate_rads, float overshoot_max_rad);
// Update _att_target_euler_rad.y by integrating a 321-intrinsic euler pitch angle derivative
void update_att_target_pitch(float euler_pitch_rate_rads, float overshoot_max_rad);
2014-02-13 08:34:27 -04:00
// Update _att_target_euler_rad.z by integrating a 321-intrinsic euler yaw angle derivative
void update_att_target_yaw(float euler_yaw_rate_rads, float overshoot_max_rad);
2014-02-13 08:34:27 -04:00
// Integrate vehicle rate into _att_error_rot_vec_rad
2014-02-13 22:52:58 -04:00
void integrate_bf_rate_error_to_angle_errors();
// Update _ang_vel_target_rads using _att_error_rot_vec_rad
void update_ang_vel_target_from_att_error();
// Run the roll angular velocity PID controller and return the output
float rate_bf_to_motor_roll(float rate_target_rads);
// Run the pitch angular velocity PID controller and return the output
float rate_bf_to_motor_pitch(float rate_target_rads);
// Run the yaw angular velocity PID controller and return the output
virtual float rate_bf_to_motor_yaw(float rate_target_rads);
// Compute a throttle value that is adjusted for the tilt angle of the vehicle
virtual float get_boosted_throttle(float throttle_in) = 0;
// Return angle in radians to be added to roll angle. Used by heli to counteract
// tail rotor thrust in hover. Overloaded by AC_Attitude_Heli to return angle.
virtual float get_roll_trim_rad() { return 0;}
// Return the roll axis acceleration limit in radians/s/s
float get_accel_roll_max_radss() { return radians(_accel_roll_max*0.01f); }
// Return the pitch axis acceleration limit in radians/s/s
float get_accel_pitch_max_radss() { return radians(_accel_pitch_max*0.01f); }
// Return the yaw axis acceleration limit in radians/s/s
float get_accel_yaw_max_radss() { return radians(_accel_yaw_max*0.01f); }
// Return the yaw slew rate limit in radians/s
float get_slew_yaw_rads() { return radians(_slew_yaw*0.01f); }
// Return the tilt angle limit in radians
float get_tilt_limit_rad() { return radians(_aparm.angle_max*0.01f); }
// Maximum rate the yaw target can be updated in Loiter, RTL, Auto flight modes
AP_Float _slew_yaw;
// Maximum rotation acceleration for earth-frame roll axis
AP_Float _accel_roll_max;
// Maximum rotation acceleration for earth-frame pitch axis
AP_Float _accel_pitch_max;
// Maximum rotation acceleration for earth-frame yaw axis
AP_Float _accel_yaw_max;
// Enable/Disable body frame rate feed forward
AP_Int8 _rate_bf_ff_enabled;
// Enable/Disable angle boost
AP_Int8 _angle_boost_enabled;
// Intersampling period in seconds
float _dt;
// This represents a 321-intrinsic rotation from NED frame to the reference (setpoint)
// attitude used in the attitude controller, in radians. Formerly _angle_ef_target.
Vector3f _att_target_euler_rad;
// This represents an euler axis-angle rotation vector from the vehicles
// estimated attitude to the reference (setpoint) attitude used in the attitude
// controller, in radians in the vehicle body frame of reference. Formerly
// _angle_bf_error.
Vector3f _att_error_rot_vec_rad;
// This represents the angular velocity of the reference (setpoint) attitude used in
// the attitude controller as 321-intrinsic euler angle derivatives, in radians per
// second. Formerly _rate_ef_desired.
Vector3f _att_target_euler_rate_rads;
// This represents the angular velocity of the reference (setpoint) attitude used in
// the attitude controller as an angular velocity vector, in radians per second in
// the reference attitude frame. Formerly _rate_bf_desired.
Vector3f _att_target_ang_vel_rads;
// This represents the reference (setpoint) angular velocity used in the angular
// velocity controller, in radians per second. Formerly _rate_bf_target.
Vector3f _ang_vel_target_rads;
// This represents the throttle increase applied for tilt compensation.
// Used only for logging.
int16_t _angle_boost;
// Specifies whether the attitude controller should use the acceleration limit
bool _att_ctrl_use_accel_limit;
// Filtered throttle input - used to limit lean angle when throttle is saturated
LowPassFilterFloat _throttle_in_filt;
// References to external libraries
const AP_AHRS& _ahrs;
const AP_Vehicle::MultiCopter &_aparm;
AP_Motors& _motors;
AC_P& _p_angle_roll;
AC_P& _p_angle_pitch;
AC_P& _p_angle_yaw;
AC_PID& _pid_rate_roll;
AC_PID& _pid_rate_pitch;
AC_PID& _pid_rate_yaw;
};
#define AC_ATTITUDE_CONTROL_LOG_FORMAT(msg) { msg, sizeof(AC_AttitudeControl::log_Attitude), \
"ATT", "cccccCC", "RollIn,Roll,PitchIn,Pitch,YawIn,Yaw,NavYaw" }