Ardupilot2/libraries/AP_Mount/AP_Mount_MAVLink.cpp

188 lines
6.4 KiB
C++
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_Mount_MAVLink.h>
#if AP_AHRS_NAVEKF_AVAILABLE
#include <GCS_MAVLink.h>
#define MOUNT_DEBUG 0
#if MOUNT_DEBUG
#include <stdio.h>
#endif
AP_Mount_MAVLink::AP_Mount_MAVLink(AP_Mount &frontend, AP_Mount::mount_state &state, uint8_t instance) :
AP_Mount_Backend(frontend, state, instance),
_initialised(false),
_ekf(frontend._ahrs)
{}
// init - performs any required initialisation for this instance
void AP_Mount_MAVLink::init(const AP_SerialManager& serial_manager)
{
_initialised = true;
set_mode((enum MAV_MOUNT_MODE)_state._default_mode.get());
}
// update mount position - should be called periodically
void AP_Mount_MAVLink::update()
{
// exit immediately if not initialised
if (!_initialised) {
return;
}
// update based on mount mode
switch(get_mode()) {
// move mount to a "retracted" position. we do not implement a separate servo based retract mechanism
case MAV_MOUNT_MODE_RETRACT:
break;
// move mount to a neutral position, typically pointing forward
case MAV_MOUNT_MODE_NEUTRAL:
break;
// point to the angles given by a mavlink message
case MAV_MOUNT_MODE_MAVLINK_TARGETING:
// do nothing because earth-frame angle targets (i.e. _angle_ef_target_rad) should have already been set by a MOUNT_CONTROL message from GCS
break;
// RC radio manual angle control, but with stabilization from the AHRS
case MAV_MOUNT_MODE_RC_TARGETING:
// update targets using pilot's rc inputs
update_targets_from_rc();
break;
// point mount to a GPS point given by the mission planner
case MAV_MOUNT_MODE_GPS_POINT:
if(_frontend._ahrs.get_gps().status() >= AP_GPS::GPS_OK_FIX_2D) {
calc_angle_to_location(_state._roi_target, _angle_ef_target_rad, true, true);
}
break;
default:
// we do not know this mode so do nothing
break;
}
}
// has_pan_control - returns true if this mount can control it's pan (required for multicopters)
bool AP_Mount_MAVLink::has_pan_control() const
{
// we do not have yaw control
return false;
}
// set_mode - sets mount's mode
void AP_Mount_MAVLink::set_mode(enum MAV_MOUNT_MODE mode)
{
// exit immediately if not initialised
if (!_initialised) {
return;
}
// record the mode change
2015-01-18 21:40:40 -04:00
_state._mode = mode;
}
// status_msg - called to allow mounts to send their status to GCS using the MOUNT_STATUS message
void AP_Mount_MAVLink::status_msg(mavlink_channel_t chan)
{
// do nothing - we rely on the mount sending the messages directly
}
/*
handle a GIMBAL_REPORT message
*/
void AP_Mount_MAVLink::handle_gimbal_report(mavlink_channel_t chan, mavlink_message_t *msg)
{
// just save it for future processing and reporting to GCS for now
mavlink_msg_gimbal_report_decode(msg, &_gimbal_report);
Vector3f delta_angles(_gimbal_report.delta_angle_x,
_gimbal_report.delta_angle_y,
_gimbal_report.delta_angle_z);
Vector3f delta_velocity(_gimbal_report.delta_velocity_x,
_gimbal_report.delta_velocity_y,
_gimbal_report.delta_velocity_z);
Vector3f joint_angles(_gimbal_report.joint_roll,
_gimbal_report.joint_pitch,
_gimbal_report.joint_yaw);
_ekf.RunEKF(_gimbal_report.delta_time, delta_angles, delta_velocity, joint_angles);
// get the gyro bias data
Vector3f gyroBias;
_ekf.getGyroBias(gyroBias);
// get the gimbal estimated quaternion
Quaternion quatEst;
_ekf.getQuat(quatEst);
// set the demanded quaternion - tilt down with a roll and yaw of zero
Quaternion quatDem;
quatDem.from_euler(_angle_ef_target_rad.x,
_angle_ef_target_rad.y,
_angle_ef_target_rad.z);
//divide the demanded quaternion by the estimated to get the error
Quaternion quatErr = quatDem / quatEst;
// convert the quaternion to an angle error vector
Vector3f deltaAngErr;
float scaler = 1.0f-quatErr[0]*quatErr[0];
if (scaler > 1e-12) {
scaler = 1.0f/sqrtf(scaler);
deltaAngErr.x = quatErr[1] * scaler;
deltaAngErr.y = quatErr[2] * scaler;
deltaAngErr.z = quatErr[3] * scaler;
} else {
deltaAngErr.zero();
}
// multiply the angle error vector by a gain to calculate a demanded gimbal rate
Vector3f rateDemand = deltaAngErr * 1.0f;
// Constrain the demanded rate to a length of 0.5 rad /sec
float length = rateDemand.length();
if (length > 0.5f) {
rateDemand = rateDemand * (0.5f / length);
}
// send the gimbal control message
mavlink_msg_gimbal_control_send(chan,
msg->sysid,
msg->compid,
rateDemand.x, rateDemand.y, rateDemand.z, // demanded rates
gyroBias.x, gyroBias.y, gyroBias.z);
}
/*
send a GIMBAL_REPORT message to the GCS
*/
void AP_Mount_MAVLink::send_gimbal_report(mavlink_channel_t chan)
{
mavlink_msg_gimbal_report_send(chan,
0, 0, // send as broadcast
_gimbal_report.delta_time,
_gimbal_report.delta_angle_x,
_gimbal_report.delta_angle_y,
_gimbal_report.delta_angle_z,
_gimbal_report.delta_velocity_x,
_gimbal_report.delta_velocity_y,
_gimbal_report.delta_velocity_z,
_gimbal_report.joint_roll,
_gimbal_report.joint_pitch,
_gimbal_report.joint_yaw);
float tilt;
Vector3f velocity, euler, gyroBias;
_ekf.getDebug(tilt, velocity, euler, gyroBias);
#if MOUNT_DEBUG
::printf("tilt=%.2f euler=(%.2f, %.2f, %.2f) vel=(%.2f, %.2f %.2f)\n",
tilt,
degrees(euler.x), degrees(euler.y), degrees(euler.z),
(velocity.x), (velocity.y), (velocity.z));
#endif
}
#endif // AP_AHRS_NAVEKF_AVAILABLE