Ardupilot2/libraries/AP_Mount/AP_Mount_MAVLink.cpp

254 lines
9.2 KiB
C++
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_Mount_MAVLink.h>
#if AP_AHRS_NAVEKF_AVAILABLE
#include <GCS_MAVLink.h>
#define MOUNT_DEBUG 0
#if MOUNT_DEBUG
#include <stdio.h>
#endif
AP_Mount_MAVLink::AP_Mount_MAVLink(AP_Mount &frontend, AP_Mount::mount_state state, uint8_t instance) :
AP_Mount_Backend(frontend, state, instance),
_initialised(false),
_chan(MAVLINK_COMM_0),
_last_mode(MAV_MOUNT_MODE_RETRACT),
_ekf(frontend._ahrs)
{}
// init - performs any required initialisation for this instance
void AP_Mount_MAVLink::init(const AP_SerialManager& serial_manager)
{
// use mavlink channel associated with MAVLink2 protocol
if (serial_manager.get_mavlink_channel(AP_SerialManager::SerialProtocol_MAVLink2, _chan)) {
_initialised = true;
}
}
// update mount position - should be called periodically
void AP_Mount_MAVLink::update()
{
// exit immediately if not initialised
if (!_initialised) {
return;
}
// update based on mount mode
switch(get_mode()) {
// move mount to a "retracted" position. we do not implement a separate servo based retract mechanism
case MAV_MOUNT_MODE_RETRACT:
2015-01-18 21:40:40 -04:00
send_angle_target(_state._retract_angles.get(), true);
break;
// move mount to a neutral position, typically pointing forward
case MAV_MOUNT_MODE_NEUTRAL:
2015-01-18 21:40:40 -04:00
send_angle_target(_state._neutral_angles.get(), true);
break;
// point to the angles given by a mavlink message
case MAV_MOUNT_MODE_MAVLINK_TARGETING:
// do nothing because earth-frame angle targets (i.e. _angle_ef_target_rad) should have already been set by a MOUNT_CONTROL message from GCS
break;
// RC radio manual angle control, but with stabilization from the AHRS
case MAV_MOUNT_MODE_RC_TARGETING:
// update targets using pilot's rc inputs
update_targets_from_rc();
send_angle_target(_angle_ef_target_rad, false);
break;
// point mount to a GPS point given by the mission planner
case MAV_MOUNT_MODE_GPS_POINT:
if(_frontend._ahrs.get_gps().status() >= AP_GPS::GPS_OK_FIX_2D) {
2015-01-18 21:40:40 -04:00
calc_angle_to_location(_state._roi_target, _angle_ef_target_rad, true, false);
send_angle_target(_angle_ef_target_rad, false);
}
break;
default:
// we do not know this mode so do nothing
break;
}
}
// has_pan_control - returns true if this mount can control it's pan (required for multicopters)
bool AP_Mount_MAVLink::has_pan_control() const
{
// we do not have yaw control
return false;
}
// set_mode - sets mount's mode
void AP_Mount_MAVLink::set_mode(enum MAV_MOUNT_MODE mode)
{
// exit immediately if not initialised
if (!_initialised) {
return;
}
// map requested mode to mode that mount can actually support
enum MAV_MOUNT_MODE mode_to_send = mode;
switch (mode) {
case MAV_MOUNT_MODE_RETRACT:
case MAV_MOUNT_MODE_NEUTRAL:
case MAV_MOUNT_MODE_MAVLINK_TARGETING:
case MAV_MOUNT_MODE_RC_TARGETING:
case MAV_MOUNT_MODE_GPS_POINT:
mode_to_send = MAV_MOUNT_MODE_MAVLINK_TARGETING;
break;
default:
// unknown mode so just send it and hopefully gimbal supports it
break;
}
// prepare and send command_long message with DO_SET_MODE command
mavlink_msg_command_long_send(
_chan, mavlink_system.sysid, AP_MOUNT_MAVLINK_COMPID, // channel, system id, component id
MAV_CMD_DO_SET_MODE, // command number
0, // confirmation: 0=first confirmation of this command
mode_to_send, // param1: mode
0, // param2: custom mode
0.0f, 0.0f, 0.0f,0.0f, 0.0f); // param3 ~ param 7: not used
// record the mode change
2015-01-18 21:40:40 -04:00
_state._mode = mode;
_last_mode = mode_to_send;
}
// status_msg - called to allow mounts to send their status to GCS using the MOUNT_STATUS message
void AP_Mount_MAVLink::status_msg(mavlink_channel_t chan)
{
// do nothing - we rely on the mount sending the messages directly
}
// send_angle_target - send earth-frame angle targets to mount
void AP_Mount_MAVLink::send_angle_target(const Vector3f& target, bool target_in_degrees)
{
// exit immediately if not initialised
if (!_initialised) {
return;
}
// convert to degrees if necessary
Vector3f target_deg = target;
if (!target_in_degrees) {
target_deg *= RAD_TO_DEG;
}
// exit immediately if mode and targets have not changed since last time they were sent
2015-01-18 21:40:40 -04:00
if (_state._mode == MAV_MOUNT_MODE_MAVLINK_TARGETING && target_deg == _last_angle_target) {
return;
}
// prepare and send command_long message with DO_MOUNT_CONTROL command
mavlink_msg_command_long_send(
_chan, mavlink_system.sysid, AP_MOUNT_MAVLINK_COMPID, // channel, system id, component id
MAV_CMD_DO_MOUNT_CONTROL, // command number
0, // confirmation: 0=first confirmation of this command
target_deg.y, // param1: pitch (in degrees) or lat (as int32_t)
target_deg.x, // param2: roll (in degrees) or lon (as int32_t)
target_deg.z, // param3: yaw (in degrees) or alt (in meters).
0.0f,0.0f,0.0f, // param4 ~ param6 : not used
MAV_MOUNT_MODE_MAVLINK_TARGETING); // param7: MAV_MOUNT_MODE enum value
// store sent target and mode
_last_angle_target = target_deg;
_last_mode = MAV_MOUNT_MODE_MAVLINK_TARGETING;
}
/*
handle a GIMBAL_REPORT message
*/
void AP_Mount_MAVLink::handle_gimbal_report(mavlink_channel_t chan, mavlink_message_t *msg)
{
// just save it for future processing and reporting to GCS for now
mavlink_msg_gimbal_report_decode(msg, &_gimbal_report);
Vector3f delta_angles(_gimbal_report.delta_angle_x,
_gimbal_report.delta_angle_y,
_gimbal_report.delta_angle_z);
Vector3f delta_velocity(_gimbal_report.delta_velocity_x,
_gimbal_report.delta_velocity_y,
_gimbal_report.delta_velocity_z);
Vector3f joint_angles(_gimbal_report.joint_roll,
_gimbal_report.joint_pitch,
_gimbal_report.joint_yaw);
_ekf.RunEKF(_gimbal_report.delta_time, delta_angles, delta_velocity, joint_angles);
// get the gyro bias data
Vector3f gyroBias;
_ekf.getGyroBias(gyroBias);
// get the gimbal estimated quaternion
Quaternion quatEst;
_ekf.getQuat(quatEst);
// set the demanded quaternion - tilt down with a roll and yaw of zero
Quaternion quatDem;
quatDem[0] = sqrtf(0.75f);
quatDem[2] = -sqrtf(0.25f);
//divide the demanded quaternion by the estimated to get the error
Quaternion quatErr = quatDem / quatEst;
// convert the quaternion to an angle error vector
Vector3f deltaAngErr;
float scaler = 1.0f-quatErr[0]*quatErr[0];
if (scaler > 1e-12) {
scaler = 1.0f/sqrtf(scaler);
deltaAngErr.x = quatErr[1] * scaler;
deltaAngErr.y = quatErr[2] * scaler;
deltaAngErr.z = quatErr[3] * scaler;
} else {
deltaAngErr.zero();
}
// multiply the angle error vector by a gain to calculate a demanded gimbal rate
Vector3f rateDemand = deltaAngErr * 1.0f;
// Constrain the demanded rate to a length of 0.5 rad /sec
float length = rateDemand.length();
if (length > 0.5f) {
rateDemand = rateDemand * (0.5f / length);
}
// send the gimbal control message
mavlink_msg_gimbal_control_send(chan,
msg->sysid,
msg->compid,
rateDemand.x, rateDemand.y, rateDemand.z, // demanded rates
gyroBias.x, gyroBias.y, gyroBias.z);
}
/*
send a GIMBAL_REPORT message to the GCS
*/
void AP_Mount_MAVLink::send_gimbal_report(mavlink_channel_t chan)
{
mavlink_msg_gimbal_report_send(chan,
0, 0, // send as broadcast
_gimbal_report.delta_time,
_gimbal_report.delta_angle_x,
_gimbal_report.delta_angle_y,
_gimbal_report.delta_angle_z,
_gimbal_report.delta_velocity_x,
_gimbal_report.delta_velocity_y,
_gimbal_report.delta_velocity_z,
_gimbal_report.joint_roll,
_gimbal_report.joint_pitch,
_gimbal_report.joint_yaw);
float tilt;
Vector3f velocity, euler, gyroBias;
_ekf.getDebug(tilt, velocity, euler, gyroBias);
#if MOUNT_DEBUG
::printf("tilt=%.2f euler=(%.2f, %.2f, %.2f) vel=(%.2f, %.2f %.2f)\n",
tilt,
degrees(euler.x), degrees(euler.y), degrees(euler.z),
(velocity.x), (velocity.y), (velocity.z));
#endif
}
#endif // AP_AHRS_NAVEKF_AVAILABLE