// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #if AP_AHRS_NAVEKF_AVAILABLE #include #define MOUNT_DEBUG 0 #if MOUNT_DEBUG #include #endif AP_Mount_MAVLink::AP_Mount_MAVLink(AP_Mount &frontend, AP_Mount::mount_state state, uint8_t instance) : AP_Mount_Backend(frontend, state, instance), _initialised(false), _chan(MAVLINK_COMM_0), _last_mode(MAV_MOUNT_MODE_RETRACT), _ekf(frontend._ahrs) {} // init - performs any required initialisation for this instance void AP_Mount_MAVLink::init(const AP_SerialManager& serial_manager) { // use mavlink channel associated with MAVLink2 protocol if (serial_manager.get_mavlink_channel(AP_SerialManager::SerialProtocol_MAVLink2, _chan)) { _initialised = true; } } // update mount position - should be called periodically void AP_Mount_MAVLink::update() { // exit immediately if not initialised if (!_initialised) { return; } // update based on mount mode switch(get_mode()) { // move mount to a "retracted" position. we do not implement a separate servo based retract mechanism case MAV_MOUNT_MODE_RETRACT: send_angle_target(_state._retract_angles.get(), true); break; // move mount to a neutral position, typically pointing forward case MAV_MOUNT_MODE_NEUTRAL: send_angle_target(_state._neutral_angles.get(), true); break; // point to the angles given by a mavlink message case MAV_MOUNT_MODE_MAVLINK_TARGETING: // do nothing because earth-frame angle targets (i.e. _angle_ef_target_rad) should have already been set by a MOUNT_CONTROL message from GCS break; // RC radio manual angle control, but with stabilization from the AHRS case MAV_MOUNT_MODE_RC_TARGETING: // update targets using pilot's rc inputs update_targets_from_rc(); send_angle_target(_angle_ef_target_rad, false); break; // point mount to a GPS point given by the mission planner case MAV_MOUNT_MODE_GPS_POINT: if(_frontend._ahrs.get_gps().status() >= AP_GPS::GPS_OK_FIX_2D) { calc_angle_to_location(_state._roi_target, _angle_ef_target_rad, true, false); send_angle_target(_angle_ef_target_rad, false); } break; default: // we do not know this mode so do nothing break; } } // has_pan_control - returns true if this mount can control it's pan (required for multicopters) bool AP_Mount_MAVLink::has_pan_control() const { // we do not have yaw control return false; } // set_mode - sets mount's mode void AP_Mount_MAVLink::set_mode(enum MAV_MOUNT_MODE mode) { // exit immediately if not initialised if (!_initialised) { return; } // map requested mode to mode that mount can actually support enum MAV_MOUNT_MODE mode_to_send = mode; switch (mode) { case MAV_MOUNT_MODE_RETRACT: case MAV_MOUNT_MODE_NEUTRAL: case MAV_MOUNT_MODE_MAVLINK_TARGETING: case MAV_MOUNT_MODE_RC_TARGETING: case MAV_MOUNT_MODE_GPS_POINT: mode_to_send = MAV_MOUNT_MODE_MAVLINK_TARGETING; break; default: // unknown mode so just send it and hopefully gimbal supports it break; } // prepare and send command_long message with DO_SET_MODE command mavlink_msg_command_long_send( _chan, mavlink_system.sysid, AP_MOUNT_MAVLINK_COMPID, // channel, system id, component id MAV_CMD_DO_SET_MODE, // command number 0, // confirmation: 0=first confirmation of this command mode_to_send, // param1: mode 0, // param2: custom mode 0.0f, 0.0f, 0.0f,0.0f, 0.0f); // param3 ~ param 7: not used // record the mode change _state._mode = mode; _last_mode = mode_to_send; } // status_msg - called to allow mounts to send their status to GCS using the MOUNT_STATUS message void AP_Mount_MAVLink::status_msg(mavlink_channel_t chan) { // do nothing - we rely on the mount sending the messages directly } // send_angle_target - send earth-frame angle targets to mount void AP_Mount_MAVLink::send_angle_target(const Vector3f& target, bool target_in_degrees) { // exit immediately if not initialised if (!_initialised) { return; } // convert to degrees if necessary Vector3f target_deg = target; if (!target_in_degrees) { target_deg *= RAD_TO_DEG; } // exit immediately if mode and targets have not changed since last time they were sent if (_state._mode == MAV_MOUNT_MODE_MAVLINK_TARGETING && target_deg == _last_angle_target) { return; } // prepare and send command_long message with DO_MOUNT_CONTROL command mavlink_msg_command_long_send( _chan, mavlink_system.sysid, AP_MOUNT_MAVLINK_COMPID, // channel, system id, component id MAV_CMD_DO_MOUNT_CONTROL, // command number 0, // confirmation: 0=first confirmation of this command target_deg.y, // param1: pitch (in degrees) or lat (as int32_t) target_deg.x, // param2: roll (in degrees) or lon (as int32_t) target_deg.z, // param3: yaw (in degrees) or alt (in meters). 0.0f,0.0f,0.0f, // param4 ~ param6 : not used MAV_MOUNT_MODE_MAVLINK_TARGETING); // param7: MAV_MOUNT_MODE enum value // store sent target and mode _last_angle_target = target_deg; _last_mode = MAV_MOUNT_MODE_MAVLINK_TARGETING; } /* handle a GIMBAL_REPORT message */ void AP_Mount_MAVLink::handle_gimbal_report(mavlink_channel_t chan, mavlink_message_t *msg) { // just save it for future processing and reporting to GCS for now mavlink_msg_gimbal_report_decode(msg, &_gimbal_report); Vector3f delta_angles(_gimbal_report.delta_angle_x, _gimbal_report.delta_angle_y, _gimbal_report.delta_angle_z); Vector3f delta_velocity(_gimbal_report.delta_velocity_x, _gimbal_report.delta_velocity_y, _gimbal_report.delta_velocity_z); Vector3f joint_angles(_gimbal_report.joint_roll, _gimbal_report.joint_pitch, _gimbal_report.joint_yaw); _ekf.RunEKF(_gimbal_report.delta_time, delta_angles, delta_velocity, joint_angles); // get the gyro bias data Vector3f gyroBias; _ekf.getGyroBias(gyroBias); // get the gimbal estimated quaternion Quaternion quatEst; _ekf.getQuat(quatEst); // set the demanded quaternion - tilt down with a roll and yaw of zero Quaternion quatDem; quatDem[0] = sqrtf(0.75f); quatDem[2] = -sqrtf(0.25f); //divide the demanded quaternion by the estimated to get the error Quaternion quatErr = quatDem / quatEst; // convert the quaternion to an angle error vector Vector3f deltaAngErr; float scaler = 1.0f-quatErr[0]*quatErr[0]; if (scaler > 1e-12) { scaler = 1.0f/sqrtf(scaler); deltaAngErr.x = quatErr[1] * scaler; deltaAngErr.y = quatErr[2] * scaler; deltaAngErr.z = quatErr[3] * scaler; } else { deltaAngErr.zero(); } // multiply the angle error vector by a gain to calculate a demanded gimbal rate Vector3f rateDemand = deltaAngErr * 1.0f; // Constrain the demanded rate to a length of 0.5 rad /sec float length = rateDemand.length(); if (length > 0.5f) { rateDemand = rateDemand * (0.5f / length); } // send the gimbal control message mavlink_msg_gimbal_control_send(chan, msg->sysid, msg->compid, rateDemand.x, rateDemand.y, rateDemand.z, // demanded rates gyroBias.x, gyroBias.y, gyroBias.z); } /* send a GIMBAL_REPORT message to the GCS */ void AP_Mount_MAVLink::send_gimbal_report(mavlink_channel_t chan) { mavlink_msg_gimbal_report_send(chan, 0, 0, // send as broadcast _gimbal_report.delta_time, _gimbal_report.delta_angle_x, _gimbal_report.delta_angle_y, _gimbal_report.delta_angle_z, _gimbal_report.delta_velocity_x, _gimbal_report.delta_velocity_y, _gimbal_report.delta_velocity_z, _gimbal_report.joint_roll, _gimbal_report.joint_pitch, _gimbal_report.joint_yaw); float tilt; Vector3f velocity, euler, gyroBias; _ekf.getDebug(tilt, velocity, euler, gyroBias); #if MOUNT_DEBUG ::printf("tilt=%.2f euler=(%.2f, %.2f, %.2f) vel=(%.2f, %.2f %.2f)\n", tilt, degrees(euler.x), degrees(euler.y), degrees(euler.z), (velocity.x), (velocity.y), (velocity.z)); #endif } #endif // AP_AHRS_NAVEKF_AVAILABLE