2013-05-29 20:51:34 -03:00
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
2012-04-02 05:26:37 -03:00
/*
2012-08-17 03:20:26 -03:00
* AP_MotorsMatrix . cpp - ArduCopter motors library
* Code by RandyMackay . DIYDrones . com
*
* This library is free software ; you can redistribute it and / or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation ; either
* version 2.1 of the License , or ( at your option ) any later version .
*/
2012-10-26 20:59:07 -03:00
# include <AP_HAL.h>
2012-04-02 05:26:37 -03:00
# include "AP_MotorsMatrix.h"
2012-10-26 20:59:07 -03:00
extern const AP_HAL : : HAL & hal ;
2012-04-02 05:26:37 -03:00
// Init
void AP_MotorsMatrix : : Init ( )
{
2012-09-18 11:05:08 -03:00
// call parent Init function to set-up throttle curve
AP_Motors : : Init ( ) ;
2012-08-17 03:20:26 -03:00
// setup the motors
setup_motors ( ) ;
2012-04-02 05:26:37 -03:00
2012-08-17 03:20:26 -03:00
// enable fast channels or instant pwm
set_update_rate ( _speed_hz ) ;
2012-04-02 05:26:37 -03:00
}
2012-09-13 09:31:13 -03:00
// set update rate to motors - a value in hertz
2012-04-02 05:26:37 -03:00
void AP_MotorsMatrix : : set_update_rate ( uint16_t speed_hz )
{
2012-08-17 03:20:26 -03:00
int8_t i ;
// record requested speed
_speed_hz = speed_hz ;
// check each enabled motor
2013-01-10 00:52:46 -04:00
uint32_t mask = 0 ;
2012-08-17 03:20:26 -03:00
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
2013-01-10 00:52:46 -04:00
mask | = 1U < < _motor_to_channel_map [ i ] ;
2012-08-17 03:20:26 -03:00
}
}
2013-01-10 00:52:46 -04:00
hal . rcout - > set_freq ( mask , _speed_hz ) ;
2012-04-02 05:26:37 -03:00
}
// set frame orientation (normally + or X)
void AP_MotorsMatrix : : set_frame_orientation ( uint8_t new_orientation )
{
2012-08-17 03:20:26 -03:00
// return if nothing has changed
if ( new_orientation = = _frame_orientation ) {
return ;
}
2012-04-02 05:26:37 -03:00
2012-08-17 03:20:26 -03:00
// call parent
AP_Motors : : set_frame_orientation ( new_orientation ) ;
2012-04-02 05:26:37 -03:00
2012-08-17 03:20:26 -03:00
// setup the motors
setup_motors ( ) ;
2012-04-02 05:26:37 -03:00
2012-08-17 03:20:26 -03:00
// enable fast channels or instant pwm
set_update_rate ( _speed_hz ) ;
2012-04-02 05:26:37 -03:00
}
// enable - starts allowing signals to be sent to motors
void AP_MotorsMatrix : : enable ( )
{
2012-08-17 03:20:26 -03:00
int8_t i ;
// enable output channels
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
2012-10-26 20:59:07 -03:00
hal . rcout - > enable_ch ( _motor_to_channel_map [ i ] ) ;
2012-08-17 03:20:26 -03:00
}
}
2012-04-02 05:26:37 -03:00
}
// output_min - sends minimum values out to the motors
void AP_MotorsMatrix : : output_min ( )
{
2012-08-17 03:20:26 -03:00
int8_t i ;
// fill the motor_out[] array for HIL use and send minimum value to each motor
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
motor_out [ i ] = _rc_throttle - > radio_min ;
2012-10-26 20:59:07 -03:00
hal . rcout - > write ( _motor_to_channel_map [ i ] , motor_out [ i ] ) ;
2012-08-17 03:20:26 -03:00
}
}
2012-04-02 05:26:37 -03:00
}
2013-05-26 23:21:31 -03:00
# ifdef AP_MOTORS_MATRIX_SCALING_STABILITY_PATCH
// output_armed - sends commands to the motors
// includes new scaling stability patch
void AP_MotorsMatrix : : output_armed ( )
{
int8_t i ;
int16_t out_min = _rc_throttle - > radio_min + _min_throttle ;
int16_t out_max = _rc_throttle - > radio_max ;
int16_t out_mid = ( out_min + out_max ) / 2 ;
int16_t out_max_range ; // the is the allowable throttle out setting that allowes maximum roll, pitch and yaw range
float rpy_scale = 1.0 ; // this is used to scale the roll, pitch and yaw to fit within the motor limits
int16_t rpy_out [ AP_MOTORS_MAX_NUM_MOTORS ] ; // buffer so we don't have to multiply coefficients multiple times.
int16_t rpy_low = 0 ; // lowest motor value
int16_t rpy_high = 0 ; // highest motor value
int16_t yaw_allowed ; // amount of yaw we can fit in
int16_t thr_adj ; // how far we move the throttle point from out_max_range
// initialize reached_limit flag
_reached_limit = AP_MOTOR_NO_LIMITS_REACHED ;
// Throttle is 0 to 1000 only
// To-Do: we should not really be limiting this here because we don't "own" this _rc_throttle object
_rc_throttle - > servo_out = constrain_int16 ( _rc_throttle - > servo_out , 0 , _max_throttle ) ;
// capture desired roll, pitch, yaw and throttle from receiver
_rc_roll - > calc_pwm ( ) ;
_rc_pitch - > calc_pwm ( ) ;
_rc_throttle - > calc_pwm ( ) ;
_rc_yaw - > calc_pwm ( ) ;
// if we are not sending a throttle output, we cut the motors
if ( _rc_throttle - > servo_out = = 0 ) {
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
motor_out [ i ] = _rc_throttle - > radio_min ;
}
}
// Every thing is limited
_reached_limit | = AP_MOTOR_ROLLPITCH_LIMIT | AP_MOTOR_YAW_LIMIT | AP_MOTOR_THROTTLE_LIMIT ;
} else {
// check if throttle is below limit
if ( _rc_throttle - > radio_out < out_min ) {
_reached_limit | = AP_MOTOR_THROTTLE_LIMIT ;
}
// calculate roll and pitch for each motor
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
rpy_out [ i ] = _rc_roll - > pwm_out * _roll_factor [ i ] +
_rc_pitch - > pwm_out * _pitch_factor [ i ] ;
// record lowest roll pitch command
if ( rpy_out [ i ] < rpy_low ) {
rpy_low = rpy_out [ i ] ;
}
// record highest roll pich command
if ( rpy_out [ i ] > rpy_high ) {
rpy_high = rpy_out [ i ] ;
}
}
}
// calculate throttle that gives most possible room for yaw (range 1000 ~ 2000)
// this value is either:
// mid throttle - average of highest and lowest motor
// the higher of the pilot's throttle input or hover-throttle -- this ensure we never increase the throttle above hover throttle unless the pilot has commanded that
int16_t motor_mid = ( rpy_low + rpy_high ) / 2 ;
out_max_range = min ( out_mid - motor_mid , max ( _rc_throttle - > radio_out , ( _rc_throttle - > radio_out + _hover_out ) / 2 ) ) ;
// calculate amount of yaw we can fit into the throttle range
// this is always equal to or less than the requested yaw from the pilot or rate controller
yaw_allowed = min ( out_max - out_max_range , out_max_range - out_min ) - ( rpy_high - rpy_low ) / 2 ;
yaw_allowed = max ( yaw_allowed , AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM ) ; // allow at least 200 of yaw
if ( _rc_yaw - > pwm_out > 0 ) {
// if yawing right
yaw_allowed = min ( yaw_allowed , _rc_yaw - > pwm_out ) ; // minimum that we can fit vs what we have asked for
// we haven't even been able to apply full yaw command
_reached_limit | = AP_MOTOR_YAW_LIMIT ;
} else if ( _rc_yaw - > pwm_out < 0 ) {
// if yawing left
yaw_allowed = max ( - yaw_allowed , _rc_yaw - > pwm_out ) ;
// we haven't even been able to apply full yaw command
_reached_limit | = AP_MOTOR_YAW_LIMIT ;
} else {
yaw_allowed = 0 ;
}
// add yaw to intermediate numbers for each motor
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
rpy_out [ i ] = rpy_out [ i ] +
yaw_allowed * _yaw_factor [ i ] ;
// record lowest roll+pitch+yaw command
if ( rpy_out [ i ] < rpy_low ) {
rpy_low = rpy_out [ i ] ;
}
// record highest roll+pitch+yaw command
if ( rpy_out [ i ] > rpy_high ) {
rpy_high = rpy_out [ i ] ;
}
}
}
// check everything fits
thr_adj = _rc_throttle - > radio_out - out_max_range ;
if ( thr_adj > 0 ) {
// increase throttle as close as possible to requested throttle
// without going over out_max
if ( thr_adj > out_max - ( rpy_high + out_max_range ) ) {
thr_adj = out_max - ( rpy_high + out_max_range ) ;
// we haven't even been able to apply full throttle command
_reached_limit | = AP_MOTOR_THROTTLE_LIMIT ;
}
} else if ( thr_adj < 0 ) {
// decrease throttle as close as possible to requested throttle
// without going under out_min or over out_max
// earlier code ensures we can't break both boundaryies
thr_adj = max ( min ( thr_adj , out_max - ( rpy_high + out_max_range ) ) , min ( out_min - ( rpy_low + out_max_range ) , 0 ) ) ;
}
// do we need to reduce roll, pitch, yaw command
// earlier code does not allow both limit's to be passed simultainiously with abs(_yaw_factor)<1
if ( ( rpy_low + out_max_range ) + thr_adj < out_min ) {
rpy_scale = ( float ) ( out_min - thr_adj - out_max_range ) / rpy_low ;
// we haven't even been able to apply full roll, pitch and minimal yaw without scaling
_reached_limit | = AP_MOTOR_ROLLPITCH_LIMIT | AP_MOTOR_YAW_LIMIT ;
} else if ( ( rpy_high + out_max_range ) + thr_adj > out_max ) {
rpy_scale = ( float ) ( out_max - thr_adj - out_max_range ) / rpy_high ;
// we haven't even been able to apply full roll, pitch and minimal yaw without scaling
_reached_limit | = AP_MOTOR_ROLLPITCH_LIMIT | AP_MOTOR_YAW_LIMIT ;
}
// add scaled roll, pitch, constrained yaw and throttle for each motor
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
motor_out [ i ] = out_max_range + thr_adj +
rpy_scale * rpy_out [ i ] ;
}
}
// adjust for throttle curve
if ( _throttle_curve_enabled ) {
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
motor_out [ i ] = _throttle_curve . get_y ( motor_out [ i ] ) ;
}
}
}
// clip motor output if required (shouldn't be)
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
motor_out [ i ] = constrain_int16 ( motor_out [ i ] , out_min , out_max ) ;
}
}
}
// send output to each motor
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
hal . rcout - > write ( _motor_to_channel_map [ i ] , motor_out [ i ] ) ;
}
}
}
# else
2012-04-02 05:26:37 -03:00
// output_armed - sends commands to the motors
void AP_MotorsMatrix : : output_armed ( )
{
2012-08-17 03:20:26 -03:00
int8_t i ;
int16_t out_min = _rc_throttle - > radio_min ;
int16_t out_max = _rc_throttle - > radio_max ;
2012-10-09 03:48:15 -03:00
int16_t rc_yaw_constrained_pwm ;
int16_t rc_yaw_excess ;
int16_t upper_margin , lower_margin ;
int16_t motor_adjustment = 0 ;
int16_t yaw_to_execute = 0 ;
2012-08-17 03:20:26 -03:00
2012-10-10 03:54:13 -03:00
// initialize reached_limit flag
_reached_limit = AP_MOTOR_NO_LIMITS_REACHED ;
2012-08-17 03:20:26 -03:00
// Throttle is 0 to 1000 only
2013-04-21 10:08:56 -03:00
_rc_throttle - > servo_out = constrain_int16 ( _rc_throttle - > servo_out , 0 , _max_throttle ) ;
2012-08-17 03:20:26 -03:00
// capture desired roll, pitch, yaw and throttle from receiver
_rc_roll - > calc_pwm ( ) ;
_rc_pitch - > calc_pwm ( ) ;
_rc_throttle - > calc_pwm ( ) ;
_rc_yaw - > calc_pwm ( ) ;
2012-10-10 03:54:13 -03:00
// if we are not sending a throttle output, we cut the motors
if ( _rc_throttle - > servo_out = = 0 ) {
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
motor_out [ i ] = _rc_throttle - > radio_min ;
2012-10-09 03:48:15 -03:00
}
2012-08-17 03:20:26 -03:00
}
2012-10-10 03:54:13 -03:00
// if we have any roll, pitch or yaw input then it's breaching the limit
if ( _rc_roll - > pwm_out ! = 0 | | _rc_pitch - > pwm_out ! = 0 ) {
_reached_limit | = AP_MOTOR_ROLLPITCH_LIMIT ;
}
if ( _rc_yaw - > pwm_out ! = 0 ) {
_reached_limit | = AP_MOTOR_YAW_LIMIT ;
}
} else { // non-zero throttle
2012-10-09 03:48:15 -03:00
2012-10-10 03:54:13 -03:00
out_min = _rc_throttle - > radio_min + _min_throttle ;
2012-10-09 03:48:15 -03:00
2012-10-10 03:54:13 -03:00
// initialise rc_yaw_contrained_pwm that we will certainly output and rc_yaw_excess that we will do on best-efforts basis.
// Note: these calculations and many others below depend upon _yaw_factors always being 0, -1 or 1.
if ( _rc_yaw - > pwm_out < - AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM ) {
rc_yaw_constrained_pwm = - AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM ;
rc_yaw_excess = _rc_yaw - > pwm_out + AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM ;
} else if ( _rc_yaw - > pwm_out > AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM ) {
rc_yaw_constrained_pwm = AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM ;
rc_yaw_excess = _rc_yaw - > pwm_out - AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM ;
} else {
rc_yaw_constrained_pwm = _rc_yaw - > pwm_out ;
rc_yaw_excess = 0 ;
2012-10-09 03:48:15 -03:00
}
2012-10-10 03:54:13 -03:00
// initialise upper and lower margins
upper_margin = lower_margin = out_max - out_min ;
2012-10-09 03:48:15 -03:00
2012-10-10 03:54:13 -03:00
// add roll, pitch, throttle and constrained yaw for each motor
2012-10-09 03:48:15 -03:00
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
2012-10-10 03:54:13 -03:00
motor_out [ i ] = _rc_throttle - > radio_out +
_rc_roll - > pwm_out * _roll_factor [ i ] +
_rc_pitch - > pwm_out * _pitch_factor [ i ] +
rc_yaw_constrained_pwm * _yaw_factor [ i ] ;
// calculate remaining room between fastest running motor and top of pwm range
if ( out_max - motor_out [ i ] < upper_margin ) {
upper_margin = out_max - motor_out [ i ] ;
}
// calculate remaining room between slowest running motor and bottom of pwm range
if ( motor_out [ i ] - out_min < lower_margin ) {
lower_margin = motor_out [ i ] - out_min ;
}
2012-10-09 03:48:15 -03:00
}
}
2012-10-10 03:54:13 -03:00
// if motors are running too fast and we have enough room below, lower overall throttle
if ( upper_margin < 0 | | lower_margin < 0 ) {
2012-10-09 03:48:15 -03:00
2012-10-10 03:54:13 -03:00
// calculate throttle adjustment that equalizes upper and lower margins. We will never push the throttle beyond this point
motor_adjustment = ( upper_margin - lower_margin ) / 2 ; // i.e. if overflowed by 20 on top, 30 on bottom, upper_margin = -20, lower_margin = -30. will adjust motors -5.
2012-10-09 03:48:15 -03:00
2012-10-10 03:54:13 -03:00
// if we have overflowed on the top, reduce but no more than to the mid point
if ( upper_margin < 0 ) {
motor_adjustment = max ( upper_margin , motor_adjustment ) ;
}
2012-10-09 03:48:15 -03:00
2012-10-10 03:54:13 -03:00
// if we have underflowed on the bottom, increase throttle but no more than to the mid point
if ( lower_margin < 0 ) {
motor_adjustment = min ( - lower_margin , motor_adjustment ) ;
}
}
2012-10-09 03:48:15 -03:00
2012-10-10 03:54:13 -03:00
// move throttle up or down to to pull within tolerance
if ( motor_adjustment ! = 0 ) {
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
motor_out [ i ] + = motor_adjustment ;
2012-10-09 03:48:15 -03:00
}
2012-10-10 03:54:13 -03:00
}
2012-10-09 03:48:15 -03:00
2012-10-10 03:54:13 -03:00
// we haven't even been able to apply roll, pitch and minimal yaw without adjusting throttle so mark all limits as breached
_reached_limit | = AP_MOTOR_ROLLPITCH_LIMIT | AP_MOTOR_YAW_LIMIT | AP_MOTOR_THROTTLE_LIMIT ;
}
2012-10-09 03:48:15 -03:00
2012-10-10 03:54:13 -03:00
// if we didn't give all the yaw requested, calculate how much additional yaw we can add
if ( rc_yaw_excess ! = 0 ) {
2012-10-09 03:48:15 -03:00
2012-10-10 03:54:13 -03:00
// try for everything
yaw_to_execute = rc_yaw_excess ;
// loop through motors and reduce as necessary
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] & & _yaw_factor [ i ] ! = 0 ) {
// calculate upper and lower margins for this motor
upper_margin = max ( 0 , out_max - motor_out [ i ] ) ;
lower_margin = max ( 0 , motor_out [ i ] - out_min ) ;
// motor is increasing, check upper limit
if ( rc_yaw_excess > 0 & & _yaw_factor [ i ] > 0 ) {
yaw_to_execute = min ( yaw_to_execute , upper_margin ) ;
}
// motor is decreasing, check lower limit
if ( rc_yaw_excess > 0 & & _yaw_factor [ i ] < 0 ) {
yaw_to_execute = min ( yaw_to_execute , lower_margin ) ;
}
// motor is decreasing, check lower limit
if ( rc_yaw_excess < 0 & & _yaw_factor [ i ] > 0 ) {
yaw_to_execute = max ( yaw_to_execute , - lower_margin ) ;
}
// motor is increasing, check upper limit
if ( rc_yaw_excess < 0 & & _yaw_factor [ i ] < 0 ) {
yaw_to_execute = max ( yaw_to_execute , - upper_margin ) ;
}
2012-10-09 03:48:15 -03:00
}
}
2012-10-10 03:54:13 -03:00
// check yaw_to_execute is reasonable
if ( yaw_to_execute ! = 0 & & ( ( yaw_to_execute > 0 & & rc_yaw_excess > 0 ) | | ( yaw_to_execute < 0 & & rc_yaw_excess < 0 ) ) ) {
// add the additional yaw
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
motor_out [ i ] + = _yaw_factor [ i ] * yaw_to_execute ;
}
2012-10-09 03:48:15 -03:00
}
}
2012-10-10 03:54:13 -03:00
// mark yaw limit reached if we didn't get everything we asked for
if ( yaw_to_execute ! = rc_yaw_excess ) {
_reached_limit | = AP_MOTOR_YAW_LIMIT ;
2012-09-18 11:05:08 -03:00
}
}
2012-10-10 03:54:13 -03:00
// adjust for throttle curve
if ( _throttle_curve_enabled ) {
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
motor_out [ i ] = _throttle_curve . get_y ( motor_out [ i ] ) ;
}
}
2012-08-17 03:20:26 -03:00
}
2012-10-10 03:54:13 -03:00
// clip motor output if required (shouldn't be)
2012-08-17 03:20:26 -03:00
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
2013-04-21 10:08:56 -03:00
motor_out [ i ] = constrain_int16 ( motor_out [ i ] , out_min , out_max ) ;
2012-08-17 03:20:26 -03:00
}
}
}
// send output to each motor
for ( i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
if ( motor_enabled [ i ] ) {
2012-10-26 20:59:07 -03:00
hal . rcout - > write ( _motor_to_channel_map [ i ] , motor_out [ i ] ) ;
2012-08-17 03:20:26 -03:00
}
}
2012-04-02 05:26:37 -03:00
}
2013-05-26 23:21:31 -03:00
# endif // AP_MOTORS_MATRIX_SCALING_STABILITY_PATCH
2012-04-02 05:26:37 -03:00
// output_disarmed - sends commands to the motors
void AP_MotorsMatrix : : output_disarmed ( )
{
2012-08-17 03:20:26 -03:00
// Send minimum values to all motors
output_min ( ) ;
2012-04-02 05:26:37 -03:00
}
// output_disarmed - sends commands to the motors
void AP_MotorsMatrix : : output_test ( )
{
2013-05-14 06:03:34 -03:00
uint8_t min_order , max_order ;
uint8_t i , j ;
2012-08-17 03:20:26 -03:00
// find min and max orders
2013-05-14 06:03:34 -03:00
min_order = _test_order [ 0 ] ;
max_order = _test_order [ 0 ] ;
2012-08-17 03:20:26 -03:00
for ( i = 1 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
2013-05-14 06:03:34 -03:00
if ( _test_order [ i ] < min_order )
min_order = _test_order [ i ] ;
if ( _test_order [ i ] > max_order )
max_order = _test_order [ i ] ;
2012-08-17 03:20:26 -03:00
}
// shut down all motors
output_min ( ) ;
// first delay is longer
2012-10-26 20:59:07 -03:00
hal . scheduler - > delay ( 4000 ) ;
2012-08-17 03:20:26 -03:00
// loop through all the possible orders spinning any motors that match that description
for ( i = min_order ; i < = max_order ; i + + ) {
for ( j = 0 ; j < AP_MOTORS_MAX_NUM_MOTORS ; j + + ) {
2013-05-14 06:03:34 -03:00
if ( motor_enabled [ j ] & & _test_order [ j ] = = i ) {
2012-08-17 03:20:26 -03:00
// turn on this motor and wait 1/3rd of a second
2012-10-26 20:59:07 -03:00
hal . rcout - > write ( _motor_to_channel_map [ j ] , _rc_throttle - > radio_min + 100 ) ;
hal . scheduler - > delay ( 300 ) ;
hal . rcout - > write ( _motor_to_channel_map [ j ] , _rc_throttle - > radio_min ) ;
hal . scheduler - > delay ( 2000 ) ;
2012-08-17 03:20:26 -03:00
}
}
}
// shut down all motors
output_min ( ) ;
2012-04-02 05:26:37 -03:00
}
// add_motor
2013-05-14 06:03:34 -03:00
void AP_MotorsMatrix : : add_motor_raw ( int8_t motor_num , float roll_fac , float pitch_fac , float yaw_fac , uint8_t testing_order )
2012-04-02 05:26:37 -03:00
{
2012-08-17 03:20:26 -03:00
// ensure valid motor number is provided
if ( motor_num > = 0 & & motor_num < AP_MOTORS_MAX_NUM_MOTORS ) {
// increment number of motors if this motor is being newly motor_enabled
if ( ! motor_enabled [ motor_num ] ) {
motor_enabled [ motor_num ] = true ;
_num_motors + + ;
}
// set roll, pitch, thottle factors and opposite motor (for stability patch)
_roll_factor [ motor_num ] = roll_fac ;
_pitch_factor [ motor_num ] = pitch_fac ;
_yaw_factor [ motor_num ] = yaw_fac ;
// set order that motor appears in test
2013-05-14 06:03:34 -03:00
_test_order [ motor_num ] = testing_order ;
2012-08-17 03:20:26 -03:00
}
2012-04-02 05:26:37 -03:00
}
// add_motor using just position and prop direction
2013-05-14 06:03:34 -03:00
void AP_MotorsMatrix : : add_motor ( int8_t motor_num , float angle_degrees , float yaw_factor , uint8_t testing_order )
2012-04-02 05:26:37 -03:00
{
2012-08-17 03:20:26 -03:00
// call raw motor set-up method
add_motor_raw (
motor_num ,
2013-01-10 14:42:24 -04:00
cosf ( radians ( angle_degrees + 90 ) ) , // roll factor
cosf ( radians ( angle_degrees ) ) , // pitch factor
2013-04-25 05:52:19 -03:00
yaw_factor , // yaw factor
2012-08-17 03:20:26 -03:00
testing_order ) ;
2012-04-02 05:26:37 -03:00
}
// remove_motor - disabled motor and clears all roll, pitch, throttle factors for this motor
void AP_MotorsMatrix : : remove_motor ( int8_t motor_num )
{
2012-08-17 03:20:26 -03:00
// ensure valid motor number is provided
if ( motor_num > = 0 & & motor_num < AP_MOTORS_MAX_NUM_MOTORS ) {
// if the motor was enabled decrement the number of motors
if ( motor_enabled [ motor_num ] )
_num_motors - - ;
// disable the motor, set all factors to zero
motor_enabled [ motor_num ] = false ;
_roll_factor [ motor_num ] = 0 ;
_pitch_factor [ motor_num ] = 0 ;
_yaw_factor [ motor_num ] = 0 ;
}
2012-04-02 05:26:37 -03:00
}
// remove_all_motors - removes all motor definitions
void AP_MotorsMatrix : : remove_all_motors ( )
{
2012-08-17 03:20:26 -03:00
for ( int8_t i = 0 ; i < AP_MOTORS_MAX_NUM_MOTORS ; i + + ) {
remove_motor ( i ) ;
}
_num_motors = 0 ;
2012-10-26 20:59:07 -03:00
}