AP_Motors: added reached_limit method which returns bit mask indicating which control inputs could not be achieved
This commit is contained in:
parent
9c12adba4b
commit
c0cf2d6f38
@ -50,6 +50,12 @@
|
||||
#define THROTTLE_CURVE_MID_THRUST 52 // throttle which produces 1/2 the maximum thrust. expressed as a percentage of the full throttle range (i.e 0 ~ 100)
|
||||
#define THROTTLE_CURVE_MAX_THRUST 93 // throttle which produces the maximum thrust. expressed as a percentage of the full throttle range (i.e 0 ~ 100)
|
||||
|
||||
// bit mask for recording which limits we have reached when outputting to motors
|
||||
#define AP_MOTOR_NO_LIMITS_REACHED 0x00
|
||||
#define AP_MOTOR_ROLLPITCH_LIMIT 0x01
|
||||
#define AP_MOTOR_YAW_LIMIT 0x02
|
||||
#define AP_MOTOR_THROTTLE_LIMIT 0x04
|
||||
|
||||
/// @class AP_Motors
|
||||
class AP_Motors {
|
||||
public:
|
||||
@ -120,6 +126,11 @@ public:
|
||||
virtual void output_min() {
|
||||
};
|
||||
|
||||
// reached_limits - return whether we hit the limits of the motors
|
||||
virtual uint8_t reached_limit( uint8_t which_limit = 0x00 ) {
|
||||
return _reached_limit & which_limit;
|
||||
}
|
||||
|
||||
// get basic information about the platform
|
||||
virtual uint8_t get_num_motors() {
|
||||
return 0;
|
||||
@ -169,6 +180,7 @@ protected:
|
||||
AP_Int8 _throttle_curve_enabled; // enable throttle curve
|
||||
AP_Int8 _throttle_curve_mid; // throttle which produces 1/2 the maximum thrust. expressed as a percentage (i.e. 0 ~ 100 ) of the full throttle range
|
||||
AP_Int8 _throttle_curve_max; // throttle which produces the maximum thrust. expressed as a percentage (i.e. 0 ~ 100 ) of the full throttle range
|
||||
uint8_t _reached_limit; // bit mask to record which motor limits we hit (if any) during most recent output. Used to provide feedback to attitude controllers
|
||||
};
|
||||
|
||||
#endif // AP_MOTORS
|
@ -109,142 +109,18 @@ void AP_MotorsMatrix::output_armed()
|
||||
int16_t motor_adjustment = 0;
|
||||
int16_t yaw_to_execute = 0;
|
||||
|
||||
// initialize reached_limit flag
|
||||
_reached_limit = AP_MOTOR_NO_LIMITS_REACHED;
|
||||
|
||||
// Throttle is 0 to 1000 only
|
||||
_rc_throttle->servo_out = constrain(_rc_throttle->servo_out, 0, _max_throttle);
|
||||
|
||||
if(_rc_throttle->servo_out > 0)
|
||||
out_min = _rc_throttle->radio_min + _min_throttle;
|
||||
|
||||
// capture desired roll, pitch, yaw and throttle from receiver
|
||||
_rc_roll->calc_pwm();
|
||||
_rc_pitch->calc_pwm();
|
||||
_rc_throttle->calc_pwm();
|
||||
_rc_yaw->calc_pwm();
|
||||
|
||||
// initialise rc_yaw_contrained_pwm that we will certainly output and rc_yaw_excess that we will do on best-efforts basis.
|
||||
// Note: these calculations and many others below depend upon _yaw_factors always being 0, -1 or 1.
|
||||
if( _rc_yaw->pwm_out < -AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM ) {
|
||||
rc_yaw_constrained_pwm = -AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM;
|
||||
rc_yaw_excess = _rc_yaw->pwm_out+AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM;
|
||||
}else if( _rc_yaw->pwm_out > AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM ) {
|
||||
rc_yaw_constrained_pwm = AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM;
|
||||
rc_yaw_excess = _rc_yaw->pwm_out-AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM;
|
||||
}else{
|
||||
rc_yaw_constrained_pwm = _rc_yaw->pwm_out;
|
||||
rc_yaw_excess = 0;
|
||||
}
|
||||
|
||||
// initialise upper and lower margins
|
||||
upper_margin = lower_margin = out_max - out_min;
|
||||
|
||||
// add roll, pitch, throttle and constrained yaw for each motor
|
||||
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
||||
if( motor_enabled[i] ) {
|
||||
motor_out[i] = _rc_throttle->radio_out +
|
||||
_rc_roll->pwm_out * _roll_factor[i] +
|
||||
_rc_pitch->pwm_out * _pitch_factor[i] +
|
||||
rc_yaw_constrained_pwm * _yaw_factor[i];
|
||||
|
||||
// calculate remaining room between fastest running motor and top of pwm range
|
||||
if( out_max - motor_out[i] < upper_margin) {
|
||||
upper_margin = out_max - motor_out[i];
|
||||
}
|
||||
// calculate remaining room between slowest running motor and bottom of pwm range
|
||||
if( motor_out[i] - out_min < lower_margin ) {
|
||||
lower_margin = motor_out[i] - out_min;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// if motors are running too fast and we have enough room below, lower overall throttle
|
||||
if( upper_margin < 0 || lower_margin < 0 ) {
|
||||
|
||||
// calculate throttle adjustment that equalizes upper and lower margins. We will never push the throttle beyond this point
|
||||
motor_adjustment = (upper_margin - lower_margin) / 2; // i.e. if overflowed by 20 on top, 30 on bottom, upper_margin = -20, lower_margin = -30. will adjust motors -5.
|
||||
|
||||
// if we have overflowed on the top, reduce but no more than to the mid point
|
||||
if( upper_margin < 0 ) {
|
||||
motor_adjustment = max(upper_margin, motor_adjustment);
|
||||
}
|
||||
|
||||
// if we have underflowed on the bottom, increase throttle but no more than to the mid point
|
||||
if( lower_margin < 0 ) {
|
||||
motor_adjustment = min(-lower_margin, motor_adjustment);
|
||||
}
|
||||
}
|
||||
|
||||
// move throttle up or down to to pull within tolerance
|
||||
if( motor_adjustment != 0 ) {
|
||||
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
||||
if( motor_enabled[i] ) {
|
||||
motor_out[i] += motor_adjustment;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// if we didn't give all the yaw requested, calculate how much additional yaw we can add
|
||||
if( rc_yaw_excess != 0 ) {
|
||||
|
||||
// try for everything
|
||||
yaw_to_execute = rc_yaw_excess;
|
||||
|
||||
// loop through motors and reduce as necessary
|
||||
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
||||
if( motor_enabled[i] && _yaw_factor[i] != 0 ) {
|
||||
|
||||
// calculate upper and lower margins for this motor
|
||||
upper_margin = max(0,out_max - motor_out[i]);
|
||||
lower_margin = max(0,motor_out[i] - out_min);
|
||||
|
||||
// motor is increasing, check upper limit
|
||||
if( rc_yaw_excess > 0 && _yaw_factor[i] > 0 ) {
|
||||
yaw_to_execute = min(yaw_to_execute, upper_margin);
|
||||
}
|
||||
|
||||
// motor is decreasing, check lower limit
|
||||
if( rc_yaw_excess > 0 && _yaw_factor[i] < 0 ) {
|
||||
yaw_to_execute = min(yaw_to_execute, lower_margin);
|
||||
}
|
||||
|
||||
// motor is decreasing, check lower limit
|
||||
if( rc_yaw_excess < 0 && _yaw_factor[i] > 0 ) {
|
||||
yaw_to_execute = max(yaw_to_execute, -lower_margin);
|
||||
}
|
||||
|
||||
// motor is increasing, check upper limit
|
||||
if( rc_yaw_excess < 0 && _yaw_factor[i] < 0 ) {
|
||||
yaw_to_execute = max(yaw_to_execute, -upper_margin);
|
||||
}
|
||||
}
|
||||
}
|
||||
// check yaw_to_execute is reasonable
|
||||
if( yaw_to_execute != 0 && ((yaw_to_execute>0 && rc_yaw_excess>0) || (yaw_to_execute<0 && rc_yaw_excess<0)) ) {
|
||||
// add the additional yaw
|
||||
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
||||
if( motor_enabled[i] ) {
|
||||
motor_out[i] += _yaw_factor[i] * yaw_to_execute;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// adjust for throttle curve
|
||||
if( _throttle_curve_enabled ) {
|
||||
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
||||
if( motor_enabled[i] ) {
|
||||
motor_out[i] = _throttle_curve.get_y(motor_out[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// clip motor output if required (shouldn't be)
|
||||
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
||||
if( motor_enabled[i] ) {
|
||||
motor_out[i] = constrain(motor_out[i], out_min, out_max);
|
||||
}
|
||||
}
|
||||
|
||||
#if CUT_MOTORS == ENABLED
|
||||
// if we are not sending a throttle output, we cut the motors
|
||||
if(_rc_throttle->servo_out == 0) {
|
||||
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
||||
@ -252,8 +128,147 @@ void AP_MotorsMatrix::output_armed()
|
||||
motor_out[i] = _rc_throttle->radio_min;
|
||||
}
|
||||
}
|
||||
// if we have any roll, pitch or yaw input then it's breaching the limit
|
||||
if( _rc_roll->pwm_out != 0 || _rc_pitch->pwm_out != 0 ) {
|
||||
_reached_limit |= AP_MOTOR_ROLLPITCH_LIMIT;
|
||||
}
|
||||
if( _rc_yaw->pwm_out != 0 ) {
|
||||
_reached_limit |= AP_MOTOR_YAW_LIMIT;
|
||||
}
|
||||
} else { // non-zero throttle
|
||||
|
||||
out_min = _rc_throttle->radio_min + _min_throttle;
|
||||
|
||||
// initialise rc_yaw_contrained_pwm that we will certainly output and rc_yaw_excess that we will do on best-efforts basis.
|
||||
// Note: these calculations and many others below depend upon _yaw_factors always being 0, -1 or 1.
|
||||
if( _rc_yaw->pwm_out < -AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM ) {
|
||||
rc_yaw_constrained_pwm = -AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM;
|
||||
rc_yaw_excess = _rc_yaw->pwm_out+AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM;
|
||||
}else if( _rc_yaw->pwm_out > AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM ) {
|
||||
rc_yaw_constrained_pwm = AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM;
|
||||
rc_yaw_excess = _rc_yaw->pwm_out-AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM;
|
||||
}else{
|
||||
rc_yaw_constrained_pwm = _rc_yaw->pwm_out;
|
||||
rc_yaw_excess = 0;
|
||||
}
|
||||
|
||||
// initialise upper and lower margins
|
||||
upper_margin = lower_margin = out_max - out_min;
|
||||
|
||||
// add roll, pitch, throttle and constrained yaw for each motor
|
||||
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
||||
if( motor_enabled[i] ) {
|
||||
motor_out[i] = _rc_throttle->radio_out +
|
||||
_rc_roll->pwm_out * _roll_factor[i] +
|
||||
_rc_pitch->pwm_out * _pitch_factor[i] +
|
||||
rc_yaw_constrained_pwm * _yaw_factor[i];
|
||||
|
||||
// calculate remaining room between fastest running motor and top of pwm range
|
||||
if( out_max - motor_out[i] < upper_margin) {
|
||||
upper_margin = out_max - motor_out[i];
|
||||
}
|
||||
// calculate remaining room between slowest running motor and bottom of pwm range
|
||||
if( motor_out[i] - out_min < lower_margin ) {
|
||||
lower_margin = motor_out[i] - out_min;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// if motors are running too fast and we have enough room below, lower overall throttle
|
||||
if( upper_margin < 0 || lower_margin < 0 ) {
|
||||
|
||||
// calculate throttle adjustment that equalizes upper and lower margins. We will never push the throttle beyond this point
|
||||
motor_adjustment = (upper_margin - lower_margin) / 2; // i.e. if overflowed by 20 on top, 30 on bottom, upper_margin = -20, lower_margin = -30. will adjust motors -5.
|
||||
|
||||
// if we have overflowed on the top, reduce but no more than to the mid point
|
||||
if( upper_margin < 0 ) {
|
||||
motor_adjustment = max(upper_margin, motor_adjustment);
|
||||
}
|
||||
|
||||
// if we have underflowed on the bottom, increase throttle but no more than to the mid point
|
||||
if( lower_margin < 0 ) {
|
||||
motor_adjustment = min(-lower_margin, motor_adjustment);
|
||||
}
|
||||
}
|
||||
|
||||
// move throttle up or down to to pull within tolerance
|
||||
if( motor_adjustment != 0 ) {
|
||||
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
||||
if( motor_enabled[i] ) {
|
||||
motor_out[i] += motor_adjustment;
|
||||
}
|
||||
}
|
||||
|
||||
// we haven't even been able to apply roll, pitch and minimal yaw without adjusting throttle so mark all limits as breached
|
||||
_reached_limit |= AP_MOTOR_ROLLPITCH_LIMIT | AP_MOTOR_YAW_LIMIT | AP_MOTOR_THROTTLE_LIMIT;
|
||||
}
|
||||
|
||||
// if we didn't give all the yaw requested, calculate how much additional yaw we can add
|
||||
if( rc_yaw_excess != 0 ) {
|
||||
|
||||
// try for everything
|
||||
yaw_to_execute = rc_yaw_excess;
|
||||
|
||||
// loop through motors and reduce as necessary
|
||||
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
||||
if( motor_enabled[i] && _yaw_factor[i] != 0 ) {
|
||||
|
||||
// calculate upper and lower margins for this motor
|
||||
upper_margin = max(0,out_max - motor_out[i]);
|
||||
lower_margin = max(0,motor_out[i] - out_min);
|
||||
|
||||
// motor is increasing, check upper limit
|
||||
if( rc_yaw_excess > 0 && _yaw_factor[i] > 0 ) {
|
||||
yaw_to_execute = min(yaw_to_execute, upper_margin);
|
||||
}
|
||||
|
||||
// motor is decreasing, check lower limit
|
||||
if( rc_yaw_excess > 0 && _yaw_factor[i] < 0 ) {
|
||||
yaw_to_execute = min(yaw_to_execute, lower_margin);
|
||||
}
|
||||
|
||||
// motor is decreasing, check lower limit
|
||||
if( rc_yaw_excess < 0 && _yaw_factor[i] > 0 ) {
|
||||
yaw_to_execute = max(yaw_to_execute, -lower_margin);
|
||||
}
|
||||
|
||||
// motor is increasing, check upper limit
|
||||
if( rc_yaw_excess < 0 && _yaw_factor[i] < 0 ) {
|
||||
yaw_to_execute = max(yaw_to_execute, -upper_margin);
|
||||
}
|
||||
}
|
||||
}
|
||||
// check yaw_to_execute is reasonable
|
||||
if( yaw_to_execute != 0 && ((yaw_to_execute>0 && rc_yaw_excess>0) || (yaw_to_execute<0 && rc_yaw_excess<0)) ) {
|
||||
// add the additional yaw
|
||||
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
||||
if( motor_enabled[i] ) {
|
||||
motor_out[i] += _yaw_factor[i] * yaw_to_execute;
|
||||
}
|
||||
}
|
||||
}
|
||||
// mark yaw limit reached if we didn't get everything we asked for
|
||||
if( yaw_to_execute != rc_yaw_excess ) {
|
||||
_reached_limit |= AP_MOTOR_YAW_LIMIT;
|
||||
}
|
||||
}
|
||||
|
||||
// adjust for throttle curve
|
||||
if( _throttle_curve_enabled ) {
|
||||
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
||||
if( motor_enabled[i] ) {
|
||||
motor_out[i] = _throttle_curve.get_y(motor_out[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// clip motor output if required (shouldn't be)
|
||||
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
||||
if( motor_enabled[i] ) {
|
||||
motor_out[i] = constrain(motor_out[i], out_min, out_max);
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
// send output to each motor
|
||||
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
||||
|
Loading…
Reference in New Issue
Block a user