Ardupilot2/libraries/AP_Motors/AP_MotorsHeli_Dual.cpp

600 lines
24 KiB
C++
Raw Normal View History

/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <AP_HAL/AP_HAL.h>
#include "AP_MotorsHeli_Dual.h"
#include <GCS_MAVLink/GCS.h>
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AP_MotorsHeli_Dual::var_info[] = {
AP_NESTEDGROUPINFO(AP_MotorsHeli, 0),
// Indices 1-6 were used by servo position params and should not be used
// Indices 7-8 were used by phase angle params and should not be used
// @Param: DUAL_MODE
// @DisplayName: Dual Mode
// @Description: Sets the dual mode of the heli, either as tandem or as transverse.
// @Values: 0:Longitudinal, 1:Transverse
// @User: Standard
AP_GROUPINFO("DUAL_MODE", 9, AP_MotorsHeli_Dual, _dual_mode, AP_MOTORS_HELI_DUAL_MODE_TANDEM),
// @Param: DCP_SCALER
// @DisplayName: Differential-Collective-Pitch Scaler
// @Description: Scaling factor applied to the differential-collective-pitch
// @Range: 0 1
// @User: Standard
AP_GROUPINFO("DCP_SCALER", 10, AP_MotorsHeli_Dual, _dcp_scaler, AP_MOTORS_HELI_DUAL_DCP_SCALER),
// @Param: DCP_YAW
// @DisplayName: Differential-Collective-Pitch Yaw Mixing
// @Description: Feed-forward compensation to automatically add yaw input when differential collective pitch is applied.
// @Range: -10 10
// @Increment: 0.1
AP_GROUPINFO("DCP_YAW", 11, AP_MotorsHeli_Dual, _dcp_yaw_effect, 0),
// @Param: YAW_SCALER
// @DisplayName: Scaler for yaw mixing
// @Description: Scaler for mixing yaw into roll or pitch.
// @Range: -10 10
// @Increment: 0.1
AP_GROUPINFO("YAW_SCALER", 12, AP_MotorsHeli_Dual, _yaw_scaler, 1.0f),
// Indices 13-15 were used by RSC_PWM_MIN, RSC_PWM_MAX and RSC_PWM_REV and should not be used
// @Param: COL2_MIN
// @DisplayName: Collective Pitch Minimum for rear swashplate
// @Description: Lowest possible servo position in PWM microseconds for the rear swashplate
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("COL2_MIN", 16, AP_MotorsHeli_Dual, _collective2_min, AP_MOTORS_HELI_DUAL_COLLECTIVE2_MIN),
// @Param: COL2_MAX
// @DisplayName: Collective Pitch Maximum for rear swashplate
// @Description: Highest possible servo position in PWM microseconds for the rear swashplate
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("COL2_MAX", 17, AP_MotorsHeli_Dual, _collective2_max, AP_MOTORS_HELI_DUAL_COLLECTIVE2_MAX),
// @Param: COL2_MID
// @DisplayName: Collective Pitch Mid-Point for rear swashplate
// @Description: Swash servo position in PWM microseconds corresponding to zero collective pitch for the rear swashplate (or zero lift for Asymmetrical blades)
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("COL2_MID", 18, AP_MotorsHeli_Dual, _collective2_mid, AP_MOTORS_HELI_DUAL_COLLECTIVE2_MID),
// Indice 19 was used by COL_CTRL_DIR and should not be used
// @Group: SW1_H3_
// @Path: AP_MotorsHeli_Swash.cpp
AP_SUBGROUPINFO(_swashplate1, "SW1_", 20, AP_MotorsHeli_Dual, AP_MotorsHeli_Swash),
// @Group: SW2_H3_
// @Path: AP_MotorsHeli_Swash.cpp
AP_SUBGROUPINFO(_swashplate2, "SW2_", 21, AP_MotorsHeli_Dual, AP_MotorsHeli_Swash),
AP_GROUPEND
};
// set update rate to motors - a value in hertz
void AP_MotorsHeli_Dual::set_update_rate( uint16_t speed_hz )
{
// record requested speed
_speed_hz = speed_hz;
// setup fast channels
uint16_t mask = 0;
for (uint8_t i=0; i<AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS; i++) {
mask |= 1U << (AP_MOTORS_MOT_1+i);
}
if (_swashplate1.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate1.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
mask |= 1U << (AP_MOTORS_MOT_7);
}
if (_swashplate2.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate2.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
mask |= 1U << (AP_MOTORS_MOT_8);
}
rc_set_freq(mask, _speed_hz);
}
// init_outputs
bool AP_MotorsHeli_Dual::init_outputs()
{
if (!_flags.initialised_ok) {
// make sure 6 output channels are mapped
for (uint8_t i=0; i<AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS; i++) {
add_motor_num(CH_1+i);
}
if (_swashplate1.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate1.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
add_motor_num(CH_7);
}
if (_swashplate2.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate2.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
add_motor_num(CH_8);
}
// set rotor servo range
_rotor.init_servo();
}
// reset swash servo range and endpoints
for (uint8_t i=0; i<AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS; i++) {
reset_swash_servo(SRV_Channels::get_motor_function(i));
}
if (_swashplate1.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate1.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
reset_swash_servo(SRV_Channels::get_motor_function(6));
}
if (_swashplate2.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate2.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
reset_swash_servo(SRV_Channels::get_motor_function(7));
}
_flags.initialised_ok = true;
return true;
}
// output_test_seq - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
void AP_MotorsHeli_Dual::output_test_seq(uint8_t motor_seq, int16_t pwm)
{
// exit immediately if not armed
if (!armed()) {
return;
}
// output to motors and servos
switch (motor_seq) {
case 1:
// swash servo 1
rc_write(AP_MOTORS_MOT_1, pwm);
break;
case 2:
// swash servo 2
rc_write(AP_MOTORS_MOT_2, pwm);
break;
case 3:
// swash servo 3
rc_write(AP_MOTORS_MOT_3, pwm);
break;
case 4:
// swash servo 4
rc_write(AP_MOTORS_MOT_4, pwm);
break;
case 5:
// swash servo 5
rc_write(AP_MOTORS_MOT_5, pwm);
break;
case 6:
// swash servo 6
rc_write(AP_MOTORS_MOT_6, pwm);
break;
case 7:
// main rotor
rc_write(AP_MOTORS_HELI_DUAL_RSC, pwm);
break;
default:
// do nothing
break;
}
}
// set_desired_rotor_speed
void AP_MotorsHeli_Dual::set_desired_rotor_speed(float desired_speed)
{
_rotor.set_desired_speed(desired_speed);
}
// set_rotor_rpm - used for governor with speed sensor
void AP_MotorsHeli_Dual::set_rpm(float rotor_rpm)
{
_rotor.set_rotor_rpm(rotor_rpm);
}
// calculate_armed_scalars
void AP_MotorsHeli_Dual::calculate_armed_scalars()
{
// Set common RSC variables
_rotor.set_ramp_time(_rsc_ramp_time);
_rotor.set_runup_time(_rsc_runup_time);
_rotor.set_critical_speed(_rsc_critical*0.001f);
_rotor.set_idle_output(_rsc_idle_output*0.001f);
_rotor.set_slewrate(_rsc_slewrate);
// Set rsc mode specific parameters
if (_rsc_mode == ROTOR_CONTROL_MODE_OPEN_LOOP_POWER_OUTPUT) {
_rotor.set_throttle_curve(_rsc_thrcrv.get_thrcrv());
} else if (_rsc_mode == ROTOR_CONTROL_MODE_CLOSED_LOOP_POWER_OUTPUT) {
_rotor.set_throttle_curve(_rsc_thrcrv.get_thrcrv());
_rotor.set_governor_disengage(_rsc_gov.get_disengage()*0.01f);
_rotor.set_governor_droop_response(_rsc_gov.get_droop_response()*0.01f);
_rotor.set_governor_reference(_rsc_gov.get_reference());
_rotor.set_governor_range(_rsc_gov.get_range());
_rotor.set_governor_thrcurve(_rsc_gov.get_thrcurve()*0.01f);
}
}
// calculate_scalars
void AP_MotorsHeli_Dual::calculate_scalars()
{
// range check collective min, max and mid
if( _collective_min >= _collective_max ) {
_collective_min = AP_MOTORS_HELI_COLLECTIVE_MIN;
_collective_max = AP_MOTORS_HELI_COLLECTIVE_MAX;
}
// range check collective min, max and mid for rear swashplate
if( _collective2_min >= _collective2_max ) {
_collective2_min = AP_MOTORS_HELI_DUAL_COLLECTIVE2_MIN;
_collective2_max = AP_MOTORS_HELI_DUAL_COLLECTIVE2_MAX;
}
_collective_mid = constrain_int16(_collective_mid, _collective_min, _collective_max);
_collective2_mid = constrain_int16(_collective2_mid, _collective2_min, _collective2_max);
// calculate collective mid point as a number from 0 to 1000
_collective_mid_pct = ((float)(_collective_mid-_collective_min))/((float)(_collective_max-_collective_min));
_collective2_mid_pct = ((float)(_collective2_mid-_collective2_min))/((float)(_collective2_max-_collective2_min));
// configure swashplate 1 and update scalars
_swashplate1.configure();
_swashplate1.calculate_roll_pitch_collective_factors();
// configure swashplate 2 and update scalars
_swashplate2.configure();
_swashplate2.calculate_roll_pitch_collective_factors();
// set mode of main rotor controller and trigger recalculation of scalars
_rotor.set_control_mode(static_cast<RotorControlMode>(_rsc_mode.get()));
enable_rsc_parameters();
calculate_armed_scalars();
}
// get_swashplate - calculate movement of each swashplate based on configuration
float AP_MotorsHeli_Dual::get_swashplate (int8_t swash_num, int8_t swash_axis, float pitch_input, float roll_input, float yaw_input, float coll_input)
{
float swash_tilt = 0.0f;
if (_dual_mode == AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE) {
// roll tilt
if (swash_axis == AP_MOTORS_HELI_DUAL_SWASH_AXIS_ROLL) {
if (swash_num == 1) {
swash_tilt = 0.0f;
} else if (swash_num == 2) {
swash_tilt = 0.0f;
}
} else if (swash_axis == AP_MOTORS_HELI_DUAL_SWASH_AXIS_PITCH) {
// pitch tilt
if (swash_num == 1) {
swash_tilt = pitch_input - _yaw_scaler * yaw_input;
} else if (swash_num == 2) {
swash_tilt = pitch_input + _yaw_scaler * yaw_input;
}
} else if (swash_axis == AP_MOTORS_HELI_DUAL_SWASH_AXIS_COLL) {
// collective
if (swash_num == 1) {
swash_tilt = 0.45f * _dcp_scaler * roll_input + coll_input;
} else if (swash_num == 2) {
swash_tilt = -0.45f * _dcp_scaler * roll_input + coll_input;
}
}
} else { // AP_MOTORS_HELI_DUAL_MODE_TANDEM
// roll tilt
if (swash_axis == AP_MOTORS_HELI_DUAL_SWASH_AXIS_ROLL) {
if (swash_num == 1) {
swash_tilt = roll_input + _yaw_scaler * yaw_input;
} else if (swash_num == 2) {
swash_tilt = roll_input - _yaw_scaler * yaw_input;
}
} else if (swash_axis == AP_MOTORS_HELI_DUAL_SWASH_AXIS_PITCH) {
// pitch tilt
if (swash_num == 1) {
swash_tilt = 0.0f;
} else if (swash_num == 2) {
swash_tilt = 0.0f;
}
} else if (swash_axis == AP_MOTORS_HELI_DUAL_SWASH_AXIS_COLL) {
// collective
if (swash_num == 1) {
swash_tilt = 0.45f * _dcp_scaler * pitch_input + coll_input;
} else if (swash_num == 2) {
swash_tilt = -0.45f * _dcp_scaler * pitch_input + coll_input;
}
}
}
return swash_tilt;
}
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
uint16_t AP_MotorsHeli_Dual::get_motor_mask()
{
// dual heli uses channels 1,2,3,4,5,6 and 8
uint16_t mask = 0;
for (uint8_t i=0; i<AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS; i++) {
mask |= 1U << (AP_MOTORS_MOT_1+i);
}
if (_swashplate1.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate1.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
mask |= 1U << AP_MOTORS_MOT_7;
}
if (_swashplate2.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate2.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
mask |= 1U << AP_MOTORS_MOT_8;
}
mask |= 1U << AP_MOTORS_HELI_DUAL_RSC;
return mask;
}
// update_motor_controls - sends commands to motor controllers
void AP_MotorsHeli_Dual::update_motor_control(RotorControlState state)
{
// Send state update to motors
_rotor.output(state);
if (state == ROTOR_CONTROL_STOP) {
// set engine run enable aux output to not run position to kill engine when disarmed
SRV_Channels::set_output_limit(SRV_Channel::k_engine_run_enable, SRV_Channel::SRV_CHANNEL_LIMIT_MIN);
} else {
// else if armed, set engine run enable output to run position
SRV_Channels::set_output_limit(SRV_Channel::k_engine_run_enable, SRV_Channel::SRV_CHANNEL_LIMIT_MAX);
}
// Check if rotors are run-up
_heliflags.rotor_runup_complete = _rotor.is_runup_complete();
}
//
// move_actuators - moves swash plate to attitude of parameters passed in
// - expected ranges:
// roll : -1 ~ +1
// pitch: -1 ~ +1
// collective: 0 ~ 1
// yaw: -1 ~ +1
//
void AP_MotorsHeli_Dual::move_actuators(float roll_out, float pitch_out, float collective_in, float yaw_out)
{
// initialize limits flag
limit.roll_pitch = false;
limit.yaw = false;
limit.throttle_lower = false;
limit.throttle_upper = false;
if (_dual_mode == AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE) {
if (pitch_out < -_cyclic_max/4500.0f) {
pitch_out = -_cyclic_max/4500.0f;
limit.roll_pitch = true;
}
if (pitch_out > _cyclic_max/4500.0f) {
pitch_out = _cyclic_max/4500.0f;
limit.roll_pitch = true;
}
} else {
if (roll_out < -_cyclic_max/4500.0f) {
roll_out = -_cyclic_max/4500.0f;
limit.roll_pitch = true;
}
if (roll_out > _cyclic_max/4500.0f) {
roll_out = _cyclic_max/4500.0f;
limit.roll_pitch = true;
}
}
if (_heliflags.inverted_flight) {
collective_in = 1 - collective_in;
}
float yaw_compensation = 0.0f;
// if servo output not in manual mode, process pre-compensation factors
if (_servo_mode == SERVO_CONTROL_MODE_AUTOMATED) {
// add differential collective pitch yaw compensation
if (_dual_mode == AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE) {
yaw_compensation = _dcp_yaw_effect * roll_out;
} else { // AP_MOTORS_HELI_DUAL_MODE_TANDEM
yaw_compensation = _dcp_yaw_effect * pitch_out;
}
yaw_out = yaw_out + yaw_compensation;
}
// scale yaw and update limits
if (yaw_out < -_cyclic_max/4500.0f) {
yaw_out = -_cyclic_max/4500.0f;
limit.yaw = true;
}
if (yaw_out > _cyclic_max/4500.0f) {
yaw_out = _cyclic_max/4500.0f;
limit.yaw = true;
}
// constrain collective input
float collective_out = collective_in;
if (collective_out <= 0.0f) {
collective_out = 0.0f;
limit.throttle_lower = true;
}
if (collective_out >= 1.0f) {
collective_out = 1.0f;
limit.throttle_upper = true;
}
// ensure not below landed/landing collective
if (_heliflags.landing_collective && collective_out < _collective_mid_pct) {
collective_out = _collective_mid_pct;
limit.throttle_lower = true;
}
// Set rear collective to midpoint if required
float collective2_out = collective_out;
if (_servo_mode == SERVO_CONTROL_MODE_MANUAL_CENTER) {
collective2_out = _collective2_mid_pct;
}
// scale collective pitch for front swashplate (servos 1,2,3)
float collective_scaler = ((float)(_collective_max-_collective_min))*0.001f;
float collective_out_scaled = collective_out * collective_scaler + (_collective_min - 1000)*0.001f;
// scale collective pitch for rear swashplate (servos 4,5,6)
float collective2_scaler = ((float)(_collective2_max-_collective2_min))*0.001f;
float collective2_out_scaled = collective2_out * collective2_scaler + (_collective2_min - 1000)*0.001f;
// feed power estimate into main rotor controller
// ToDo: add main rotor cyclic power?
_rotor.set_collective(fabsf(collective_out));
// compute swashplate tilt
float swash1_pitch = get_swashplate(1, AP_MOTORS_HELI_DUAL_SWASH_AXIS_PITCH, pitch_out, roll_out, yaw_out, collective_out_scaled);
float swash1_roll = get_swashplate(1, AP_MOTORS_HELI_DUAL_SWASH_AXIS_ROLL, pitch_out, roll_out, yaw_out, collective_out_scaled);
float swash1_coll = get_swashplate(1, AP_MOTORS_HELI_DUAL_SWASH_AXIS_COLL, pitch_out, roll_out, yaw_out, collective_out_scaled);
float swash2_pitch = get_swashplate(2, AP_MOTORS_HELI_DUAL_SWASH_AXIS_PITCH, pitch_out, roll_out, yaw_out, collective2_out_scaled);
float swash2_roll = get_swashplate(2, AP_MOTORS_HELI_DUAL_SWASH_AXIS_ROLL, pitch_out, roll_out, yaw_out, collective2_out_scaled);
float swash2_coll = get_swashplate(2, AP_MOTORS_HELI_DUAL_SWASH_AXIS_COLL, pitch_out, roll_out, yaw_out, collective2_out_scaled);
// get servo positions from swashplate library
_servo_out[CH_1] = _swashplate1.get_servo_out(CH_1,swash1_pitch,swash1_roll,swash1_coll);
_servo_out[CH_2] = _swashplate1.get_servo_out(CH_2,swash1_pitch,swash1_roll,swash1_coll);
_servo_out[CH_3] = _swashplate1.get_servo_out(CH_3,swash1_pitch,swash1_roll,swash1_coll);
if (_swashplate1.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate1.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
_servo_out[CH_7] = _swashplate1.get_servo_out(CH_4,swash1_pitch,swash1_roll,swash1_coll);
}
// get servo positions from swashplate library
_servo_out[CH_4] = _swashplate2.get_servo_out(CH_1,swash2_pitch,swash2_roll,swash2_coll);
_servo_out[CH_5] = _swashplate2.get_servo_out(CH_2,swash2_pitch,swash2_roll,swash2_coll);
_servo_out[CH_6] = _swashplate2.get_servo_out(CH_3,swash2_pitch,swash2_roll,swash2_coll);
if (_swashplate2.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate2.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
_servo_out[CH_8] = _swashplate2.get_servo_out(CH_4,swash2_pitch,swash2_roll,swash2_coll);
}
}
void AP_MotorsHeli_Dual::output_to_motors()
{
if (!_flags.initialised_ok) {
return;
}
// actually move the servos. PWM is sent based on nominal 1500 center. servo output shifts center based on trim value.
for (uint8_t i=0; i<AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS; i++) {
rc_write_swash(i, _servo_out[CH_1+i]);
}
// write to servo for 4 servo of 4 servo swashplate
if (_swashplate1.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate1.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
rc_write_swash(AP_MOTORS_MOT_7, _servo_out[CH_7]);
}
// write to servo for 4 servo of 4 servo swashplate
if (_swashplate2.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate2.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
rc_write_swash(AP_MOTORS_MOT_8, _servo_out[CH_8]);
}
switch (_spool_state) {
case SpoolState::SHUT_DOWN:
// sends minimum values out to the motors
update_motor_control(ROTOR_CONTROL_STOP);
break;
case SpoolState::GROUND_IDLE:
// sends idle output to motors when armed. rotor could be static or turning (autorotation)
update_motor_control(ROTOR_CONTROL_IDLE);
break;
case SpoolState::SPOOLING_UP:
case SpoolState::THROTTLE_UNLIMITED:
// set motor output based on thrust requests
update_motor_control(ROTOR_CONTROL_ACTIVE);
break;
case SpoolState::SPOOLING_DOWN:
// sends idle output to motors and wait for rotor to stop
update_motor_control(ROTOR_CONTROL_IDLE);
break;
}
}
// servo_test - move servos through full range of movement
void AP_MotorsHeli_Dual::servo_test()
{
// this test cycle is equivalent to that of AP_MotorsHeli_Single, but excluding
// mixing of yaw, as that physical movement is represented by pitch and roll
_servo_test_cycle_time += 1.0f / _loop_rate;
if ((_servo_test_cycle_time >= 0.0f && _servo_test_cycle_time < 0.5f)|| // Tilt swash back
(_servo_test_cycle_time >= 6.0f && _servo_test_cycle_time < 6.5f)){
_pitch_test += (1.0f / (_loop_rate/2));
_oscillate_angle += 8 * M_PI / _loop_rate;
} else if ((_servo_test_cycle_time >= 0.5f && _servo_test_cycle_time < 4.5f)|| // Roll swash around
(_servo_test_cycle_time >= 6.5f && _servo_test_cycle_time < 10.5f)){
_oscillate_angle += M_PI / (2 * _loop_rate);
_roll_test = sinf(_oscillate_angle);
_pitch_test = cosf(_oscillate_angle);
} else if ((_servo_test_cycle_time >= 4.5f && _servo_test_cycle_time < 5.0f)|| // Return swash to level
(_servo_test_cycle_time >= 10.5f && _servo_test_cycle_time < 11.0f)){
_pitch_test -= (1.0f / (_loop_rate/2));
_oscillate_angle += 8 * M_PI / _loop_rate;
} else if (_servo_test_cycle_time >= 5.0f && _servo_test_cycle_time < 6.0f){ // Raise swash to top
_collective_test += (1.0f / _loop_rate);
_oscillate_angle += 2 * M_PI / _loop_rate;
} else if (_servo_test_cycle_time >= 11.0f && _servo_test_cycle_time < 12.0f){ // Lower swash to bottom
_collective_test -= (1.0f / _loop_rate);
_oscillate_angle += 2 * M_PI / _loop_rate;
} else { // reset cycle
_servo_test_cycle_time = 0.0f;
_oscillate_angle = 0.0f;
_collective_test = 0.0f;
_roll_test = 0.0f;
_pitch_test = 0.0f;
// decrement servo test cycle counter at the end of the cycle
if (_servo_test_cycle_counter > 0){
_servo_test_cycle_counter--;
}
}
// over-ride servo commands to move servos through defined ranges
_throttle_filter.reset(constrain_float(_collective_test, 0.0f, 1.0f));
_roll_in = constrain_float(_roll_test, -1.0f, 1.0f);
_pitch_in = constrain_float(_pitch_test, -1.0f, 1.0f);
}
// parameter_check - check if helicopter specific parameters are sensible
bool AP_MotorsHeli_Dual::parameter_check(bool display_msg) const
{
// returns false if Phase Angle is outside of range for H3 swashplate 1
if (_swashplate1.get_swash_type() == SWASHPLATE_TYPE_H3 && (_swashplate1.get_phase_angle() > 30 || _swashplate1.get_phase_angle() < -30)){
if (display_msg) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "PreArm: H_SW1_H3_PHANG out of range");
}
return false;
}
// returns false if Phase Angle is outside of range for H3 swashplate 2
if (_swashplate2.get_swash_type() == SWASHPLATE_TYPE_H3 && (_swashplate2.get_phase_angle() > 30 || _swashplate2.get_phase_angle() < -30)){
if (display_msg) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "PreArm: H_SW2_H3_PHANG out of range");
}
return false;
}
// check parent class parameters
return AP_MotorsHeli::parameter_check(display_msg);
}