Ardupilot2/libraries/AP_Proximity/AP_Proximity.cpp

481 lines
15 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_Proximity.h"
#include "AP_Proximity_LightWareSF40C_v09.h"
#include "AP_Proximity_RPLidarA2.h"
#include "AP_Proximity_TeraRangerTower.h"
#include "AP_Proximity_TeraRangerTowerEvo.h"
#include "AP_Proximity_RangeFinder.h"
#include "AP_Proximity_MAV.h"
#include "AP_Proximity_LightWareSF40C.h"
2020-09-29 10:30:24 -03:00
#include "AP_Proximity_LightWareSF45B.h"
#include "AP_Proximity_SITL.h"
#include "AP_Proximity_MorseSITL.h"
#include "AP_Proximity_AirSimSITL.h"
extern const AP_HAL::HAL &hal;
// table of user settable parameters
const AP_Param::GroupInfo AP_Proximity::var_info[] = {
// 0 is reserved for possible addition of an ENABLED parameter
// @Param: _TYPE
// @DisplayName: Proximity type
// @Description: What type of proximity sensor is connected
2020-09-29 10:30:24 -03:00
// @Values: 0:None,7:LightwareSF40c,1:LightWareSF40C-legacy,2:MAVLink,3:TeraRangerTower,4:RangeFinder,5:RPLidarA2,6:TeraRangerTowerEvo,8:LightwareSF45B,10:SITL,11:MorseSITL,12:AirSimSITL
// @RebootRequired: True
// @User: Standard
AP_GROUPINFO("_TYPE", 1, AP_Proximity, _type[0], 0),
// @Param: _ORIENT
// @DisplayName: Proximity sensor orientation
// @Description: Proximity sensor orientation
// @Values: 0:Default,1:Upside Down
// @User: Standard
AP_GROUPINFO("_ORIENT", 2, AP_Proximity, _orientation[0], 0),
// @Param: _YAW_CORR
// @DisplayName: Proximity sensor yaw correction
// @Description: Proximity sensor yaw correction
// @Units: deg
// @Range: -180 180
// @User: Standard
AP_GROUPINFO("_YAW_CORR", 3, AP_Proximity, _yaw_correction[0], 0),
// @Param: _IGN_ANG1
// @DisplayName: Proximity sensor ignore angle 1
// @Description: Proximity sensor ignore angle 1
// @Units: deg
// @Range: 0 360
// @User: Standard
AP_GROUPINFO("_IGN_ANG1", 4, AP_Proximity, _ignore_angle_deg[0], 0),
// @Param: _IGN_WID1
// @DisplayName: Proximity sensor ignore width 1
// @Description: Proximity sensor ignore width 1
// @Units: deg
// @Range: 0 45
// @User: Standard
AP_GROUPINFO("_IGN_WID1", 5, AP_Proximity, _ignore_width_deg[0], 0),
// @Param: _IGN_ANG2
// @DisplayName: Proximity sensor ignore angle 2
// @Description: Proximity sensor ignore angle 2
// @Units: deg
// @Range: 0 360
// @User: Standard
AP_GROUPINFO("_IGN_ANG2", 6, AP_Proximity, _ignore_angle_deg[1], 0),
// @Param: _IGN_WID2
// @DisplayName: Proximity sensor ignore width 2
// @Description: Proximity sensor ignore width 2
// @Units: deg
// @Range: 0 45
// @User: Standard
AP_GROUPINFO("_IGN_WID2", 7, AP_Proximity, _ignore_width_deg[1], 0),
// @Param: _IGN_ANG3
// @DisplayName: Proximity sensor ignore angle 3
// @Description: Proximity sensor ignore angle 3
// @Units: deg
// @Range: 0 360
// @User: Standard
AP_GROUPINFO("_IGN_ANG3", 8, AP_Proximity, _ignore_angle_deg[2], 0),
// @Param: _IGN_WID3
// @DisplayName: Proximity sensor ignore width 3
// @Description: Proximity sensor ignore width 3
// @Units: deg
// @Range: 0 45
// @User: Standard
AP_GROUPINFO("_IGN_WID3", 9, AP_Proximity, _ignore_width_deg[2], 0),
// @Param: _IGN_ANG4
// @DisplayName: Proximity sensor ignore angle 4
// @Description: Proximity sensor ignore angle 4
// @Units: deg
// @Range: 0 360
// @User: Standard
AP_GROUPINFO("_IGN_ANG4", 10, AP_Proximity, _ignore_angle_deg[3], 0),
// @Param: _IGN_WID4
// @DisplayName: Proximity sensor ignore width 4
// @Description: Proximity sensor ignore width 4
// @Units: deg
// @Range: 0 45
// @User: Standard
AP_GROUPINFO("_IGN_WID4", 11, AP_Proximity, _ignore_width_deg[3], 0),
// @Param: _IGN_ANG5
// @DisplayName: Proximity sensor ignore angle 5
// @Description: Proximity sensor ignore angle 5
// @Units: deg
// @Range: 0 360
// @User: Standard
AP_GROUPINFO("_IGN_ANG5", 12, AP_Proximity, _ignore_angle_deg[4], 0),
// @Param: _IGN_WID5
// @DisplayName: Proximity sensor ignore width 5
// @Description: Proximity sensor ignore width 5
// @Units: deg
// @Range: 0 45
// @User: Standard
AP_GROUPINFO("_IGN_WID5", 13, AP_Proximity, _ignore_width_deg[4], 0),
// @Param: _IGN_ANG6
// @DisplayName: Proximity sensor ignore angle 6
// @Description: Proximity sensor ignore angle 6
// @Units: deg
// @Range: 0 360
// @User: Standard
AP_GROUPINFO("_IGN_ANG6", 14, AP_Proximity, _ignore_angle_deg[5], 0),
// @Param: _IGN_WID6
// @DisplayName: Proximity sensor ignore width 6
// @Description: Proximity sensor ignore width 6
// @Units: deg
// @Range: 0 45
// @User: Standard
AP_GROUPINFO("_IGN_WID6", 15, AP_Proximity, _ignore_width_deg[5], 0),
#if PROXIMITY_MAX_INSTANCES > 1
// @Param: 2_TYPE
// @DisplayName: Second Proximity type
// @Description: What type of proximity sensor is connected
2020-09-29 10:30:24 -03:00
// @Values: 0:None,7:LightwareSF40c,1:LightWareSF40C-legacy,2:MAVLink,3:TeraRangerTower,4:RangeFinder,5:RPLidarA2,6:TeraRangerTowerEvo,8:LightwareSF45B,10:SITL,11:MorseSITL,12:AirSimSITL
// @User: Advanced
// @RebootRequired: True
AP_GROUPINFO("2_TYPE", 16, AP_Proximity, _type[1], 0),
2017-01-05 14:07:14 -04:00
// @Param: 2_ORIENT
// @DisplayName: Second Proximity sensor orientation
// @Description: Second Proximity sensor orientation
// @Values: 0:Default,1:Upside Down
// @User: Standard
AP_GROUPINFO("2_ORIENT", 17, AP_Proximity, _orientation[1], 0),
2017-01-05 14:07:14 -04:00
// @Param: 2_YAW_CORR
// @DisplayName: Second Proximity sensor yaw correction
// @Description: Second Proximity sensor yaw correction
// @Units: deg
// @Range: -180 180
// @User: Standard
AP_GROUPINFO("2_YAW_CORR", 18, AP_Proximity, _yaw_correction[1], 0),
#endif
AP_GROUPEND
};
AP_Proximity::AP_Proximity()
{
AP_Param::setup_object_defaults(this, var_info);
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
if (_singleton != nullptr) {
AP_HAL::panic("AP_Proximity must be singleton");
}
#endif // CONFIG_HAL_BOARD == HAL_BOARD_SITL
_singleton = this;
}
// initialise the Proximity class. We do detection of attached sensors here
// we don't allow for hot-plugging of sensors (i.e. reboot required)
void AP_Proximity::init(void)
{
if (num_instances != 0) {
// init called a 2nd time?
return;
}
for (uint8_t i=0; i<PROXIMITY_MAX_INSTANCES; i++) {
detect_instance(i);
if (drivers[i] != nullptr) {
// we loaded a driver for this instance, so it must be
// present (although it may not be healthy)
num_instances = i+1;
}
// initialise status
state[i].status = Status::NotConnected;
}
}
// update Proximity state for all instances. This should be called at a high rate by the main loop
void AP_Proximity::update(void)
{
for (uint8_t i=0; i<num_instances; i++) {
if (!valid_instance(i)) {
continue;
}
drivers[i]->update();
}
// work out primary instance - first sensor returning good data
for (int8_t i=num_instances-1; i>=0; i--) {
if (drivers[i] != nullptr && (state[i].status == Status::Good)) {
primary_instance = i;
}
}
}
// return sensor orientation
uint8_t AP_Proximity::get_orientation(uint8_t instance) const
{
if (!valid_instance(instance)) {
return 0;
}
return _orientation[instance].get();
}
// return sensor yaw correction
int16_t AP_Proximity::get_yaw_correction(uint8_t instance) const
{
if (!valid_instance(instance)) {
return 0;
}
return _yaw_correction[instance].get();
}
// return sensor health
AP_Proximity::Status AP_Proximity::get_status(uint8_t instance) const
{
// sanity check instance number
if (!valid_instance(instance)) {
return Status::NotConnected;
}
return state[instance].status;
}
AP_Proximity::Status AP_Proximity::get_status() const
{
return get_status(primary_instance);
}
// handle mavlink DISTANCE_SENSOR messages
void AP_Proximity::handle_msg(const mavlink_message_t &msg)
{
for (uint8_t i=0; i<num_instances; i++) {
if (valid_instance(i)) {
drivers[i]->handle_msg(msg);
}
}
}
// detect if an instance of a proximity sensor is connected.
void AP_Proximity::detect_instance(uint8_t instance)
{
switch (get_type(instance)) {
case Type::None:
return;
case Type::SF40C_v09:
if (AP_Proximity_LightWareSF40C_v09::detect()) {
state[instance].instance = instance;
drivers[instance] = new AP_Proximity_LightWareSF40C_v09(*this, state[instance]);
return;
}
break;
case Type::RPLidarA2:
if (AP_Proximity_RPLidarA2::detect()) {
state[instance].instance = instance;
drivers[instance] = new AP_Proximity_RPLidarA2(*this, state[instance]);
return;
}
break;
case Type::MAV:
state[instance].instance = instance;
drivers[instance] = new AP_Proximity_MAV(*this, state[instance]);
return;
case Type::TRTOWER:
if (AP_Proximity_TeraRangerTower::detect()) {
state[instance].instance = instance;
drivers[instance] = new AP_Proximity_TeraRangerTower(*this, state[instance]);
return;
}
break;
case Type::TRTOWEREVO:
if (AP_Proximity_TeraRangerTowerEvo::detect()) {
state[instance].instance = instance;
drivers[instance] = new AP_Proximity_TeraRangerTowerEvo(*this, state[instance]);
return;
}
break;
case Type::RangeFinder:
state[instance].instance = instance;
drivers[instance] = new AP_Proximity_RangeFinder(*this, state[instance]);
return;
case Type::SF40C:
if (AP_Proximity_LightWareSF40C::detect()) {
state[instance].instance = instance;
drivers[instance] = new AP_Proximity_LightWareSF40C(*this, state[instance]);
return;
}
break;
2020-09-29 10:30:24 -03:00
case Type::SF45B:
if (AP_Proximity_LightWareSF45B::detect()) {
state[instance].instance = instance;
drivers[instance] = new AP_Proximity_LightWareSF45B(*this, state[instance]);
return;
}
break;
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
case Type::SITL:
state[instance].instance = instance;
drivers[instance] = new AP_Proximity_SITL(*this, state[instance]);
return;
case Type::MorseSITL:
state[instance].instance = instance;
drivers[instance] = new AP_Proximity_MorseSITL(*this, state[instance]);
return;
case Type::AirSimSITL:
state[instance].instance = instance;
drivers[instance] = new AP_Proximity_AirSimSITL(*this, state[instance]);
return;
#endif
}
}
// get distances in 8 directions. used for sending distances to ground station
bool AP_Proximity::get_horizontal_distances(Proximity_Distance_Array &prx_dist_array) const
{
if (!valid_instance(primary_instance)) {
return false;
}
// get distances from backend
return drivers[primary_instance]->get_horizontal_distances(prx_dist_array);
}
// get boundary points around vehicle for use by avoidance
// returns nullptr and sets num_points to zero if no boundary can be returned
const Vector2f* AP_Proximity::get_boundary_points(uint8_t instance, uint16_t& num_points) const
{
if (!valid_instance(instance)) {
num_points = 0;
return nullptr;
}
// get boundary from backend
return drivers[instance]->get_boundary_points(num_points);
}
const Vector2f* AP_Proximity::get_boundary_points(uint16_t& num_points) const
{
return get_boundary_points(primary_instance, num_points);
}
// get distance and angle to closest object (used for pre-arm check)
// returns true on success, false if no valid readings
bool AP_Proximity::get_closest_object(float& angle_deg, float &distance) const
{
if (!valid_instance(primary_instance)) {
return false;
}
// get closest object from backend
return drivers[primary_instance]->get_closest_object(angle_deg, distance);
}
// get number of objects, used for non-GPS avoidance
uint8_t AP_Proximity::get_object_count() const
{
if (!valid_instance(primary_instance)) {
return 0;
}
// get count from backend
return drivers[primary_instance]->get_object_count();
}
// get an object's angle and distance, used for non-GPS avoidance
// returns false if no angle or distance could be returned for some reason
bool AP_Proximity::get_object_angle_and_distance(uint8_t object_number, float& angle_deg, float &distance) const
{
if (!valid_instance(primary_instance)) {
return false;
}
// get angle and distance from backend
return drivers[primary_instance]->get_object_angle_and_distance(object_number, angle_deg, distance);
}
// get maximum and minimum distances (in meters) of primary sensor
float AP_Proximity::distance_max() const
{
if (!valid_instance(primary_instance)) {
return 0.0f;
}
// get maximum distance from backend
return drivers[primary_instance]->distance_max();
}
float AP_Proximity::distance_min() const
{
if (!valid_instance(primary_instance)) {
return 0.0f;
}
// get minimum distance from backend
return drivers[primary_instance]->distance_min();
}
// get distance in meters upwards, returns true on success
bool AP_Proximity::get_upward_distance(uint8_t instance, float &distance) const
{
if (!valid_instance(instance)) {
return false;
}
// get upward distance from backend
return drivers[instance]->get_upward_distance(distance);
}
bool AP_Proximity::get_upward_distance(float &distance) const
{
return get_upward_distance(primary_instance, distance);
}
AP_Proximity::Type AP_Proximity::get_type(uint8_t instance) const
{
if (instance < PROXIMITY_MAX_INSTANCES) {
return (Type)((uint8_t)_type[instance]);
}
return Type::None;
}
bool AP_Proximity::sensor_present() const
{
return get_status() != Status::NotConnected;
}
bool AP_Proximity::sensor_enabled() const
{
return get_type(primary_instance) != Type::None;
}
bool AP_Proximity::sensor_failed() const
{
return get_status() != Status::Good;
}
AP_Proximity *AP_Proximity::_singleton;
namespace AP {
AP_Proximity *proximity()
{
return AP_Proximity::get_singleton();
}
}