AP_Proximity: new lightware SF40C driver
New driver using latest streaming interface Old driver left in place because older devices cannot be updated
This commit is contained in:
parent
a747610fc1
commit
49069c7ad5
@ -20,6 +20,7 @@
|
||||
#include "AP_Proximity_TeraRangerTowerEvo.h"
|
||||
#include "AP_Proximity_RangeFinder.h"
|
||||
#include "AP_Proximity_MAV.h"
|
||||
#include "AP_Proximity_LightWareSF40C.h"
|
||||
#include "AP_Proximity_SITL.h"
|
||||
#include "AP_Proximity_MorseSITL.h"
|
||||
#include "AP_Proximity_AirSimSITL.h"
|
||||
@ -34,7 +35,7 @@ const AP_Param::GroupInfo AP_Proximity::var_info[] = {
|
||||
// @Param: _TYPE
|
||||
// @DisplayName: Proximity type
|
||||
// @Description: What type of proximity sensor is connected
|
||||
// @Values: 0:None,1:LightWareSF40C,2:MAVLink,3:TeraRangerTower,4:RangeFinder,5:RPLidarA2,6:TeraRangerTowerEvo,10:SITL,11:MorseSITL,12:AirSimSITL
|
||||
// @Values: 0:None,7:LightwareSF40c,1:LightWareSF40C-legacy,2:MAVLink,3:TeraRangerTower,4:RangeFinder,5:RPLidarA2,6:TeraRangerTowerEvo,10:SITL,11:MorseSITL,12:AirSimSITL
|
||||
// @RebootRequired: True
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("_TYPE", 1, AP_Proximity, _type[0], 0),
|
||||
@ -154,7 +155,7 @@ const AP_Param::GroupInfo AP_Proximity::var_info[] = {
|
||||
// @Param: 2_TYPE
|
||||
// @DisplayName: Second Proximity type
|
||||
// @Description: What type of proximity sensor is connected
|
||||
// @Values: 0:None,1:LightWareSF40C,2:MAVLink,3:TeraRangerTower,4:RangeFinder,5:RPLidarA2,6:TeraRangerTowerEvo
|
||||
// @Values: 0:None,7:LightwareSF40c,1:LightWareSF40C-legacy,2:MAVLink,3:TeraRangerTower,4:RangeFinder,5:RPLidarA2,6:TeraRangerTowerEvo,10:SITL,11:MorseSITL,12:AirSimSITL
|
||||
// @User: Advanced
|
||||
// @RebootRequired: True
|
||||
AP_GROUPINFO("2_TYPE", 16, AP_Proximity, _type[1], 0),
|
||||
@ -319,6 +320,14 @@ void AP_Proximity::detect_instance(uint8_t instance)
|
||||
drivers[instance] = new AP_Proximity_RangeFinder(*this, state[instance]);
|
||||
return;
|
||||
|
||||
case Type::SF40C:
|
||||
if (AP_Proximity_LightWareSF40C::detect()) {
|
||||
state[instance].instance = instance;
|
||||
drivers[instance] = new AP_Proximity_LightWareSF40C(*this, state[instance]);
|
||||
return;
|
||||
}
|
||||
break;
|
||||
|
||||
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
||||
case Type::SITL:
|
||||
state[instance].instance = instance;
|
||||
|
@ -46,6 +46,7 @@ public:
|
||||
RangeFinder = 4,
|
||||
RPLidarA2 = 5,
|
||||
TRTOWEREVO = 6,
|
||||
SF40C = 7,
|
||||
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
||||
SITL = 10,
|
||||
MorseSITL = 11,
|
||||
|
488
libraries/AP_Proximity/AP_Proximity_LightWareSF40C.cpp
Normal file
488
libraries/AP_Proximity/AP_Proximity_LightWareSF40C.cpp
Normal file
@ -0,0 +1,488 @@
|
||||
/*
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <AP_Common/AP_Common.h>
|
||||
#include <AP_HAL/AP_HAL.h>
|
||||
#include <AP_HAL/utility/sparse-endian.h>
|
||||
#include <AP_SerialManager/AP_SerialManager.h>
|
||||
#include <AP_Math/crc.h>
|
||||
#include "AP_Proximity_LightWareSF40C.h"
|
||||
|
||||
extern const AP_HAL::HAL& hal;
|
||||
|
||||
#define PROXIMITY_SF40C_HEADER 0xAA
|
||||
#define PROXIMITY_SF40C_DESIRED_OUTPUT_RATE 3
|
||||
#define PROXIMITY_SF40C_UART_RX_SPACE 1280
|
||||
|
||||
/*
|
||||
The constructor also initialises the proximity sensor. Note that this
|
||||
constructor is not called until detect() returns true, so we
|
||||
already know that we should setup the proximity sensor
|
||||
*/
|
||||
AP_Proximity_LightWareSF40C::AP_Proximity_LightWareSF40C(AP_Proximity &_frontend,
|
||||
AP_Proximity::Proximity_State &_state) :
|
||||
AP_Proximity_Backend(_frontend, _state)
|
||||
{
|
||||
const AP_SerialManager &serial_manager = AP::serialmanager();
|
||||
_uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Lidar360, 0);
|
||||
if (_uart != nullptr) {
|
||||
// start uart with larger receive buffer
|
||||
_uart->begin(serial_manager.find_baudrate(AP_SerialManager::SerialProtocol_Lidar360, 0), PROXIMITY_SF40C_UART_RX_SPACE, 0);
|
||||
}
|
||||
}
|
||||
|
||||
// detect if a Lightware proximity sensor is connected by looking for a configured serial port
|
||||
bool AP_Proximity_LightWareSF40C::detect()
|
||||
{
|
||||
return AP::serialmanager().find_serial(AP_SerialManager::SerialProtocol_Lidar360, 0) != nullptr;
|
||||
}
|
||||
|
||||
// update the state of the sensor
|
||||
void AP_Proximity_LightWareSF40C::update(void)
|
||||
{
|
||||
if (_uart == nullptr) {
|
||||
return;
|
||||
}
|
||||
|
||||
// initialise sensor if necessary
|
||||
initialise();
|
||||
|
||||
// process incoming messages
|
||||
process_replies();
|
||||
|
||||
// check for timeout and set health status
|
||||
if ((_last_distance_received_ms == 0) || ((AP_HAL::millis() - _last_distance_received_ms) > PROXIMITY_SF40C_TIMEOUT_MS)) {
|
||||
set_status(AP_Proximity::Status::NoData);
|
||||
} else {
|
||||
set_status(AP_Proximity::Status::Good);
|
||||
}
|
||||
}
|
||||
|
||||
// initialise sensor
|
||||
void AP_Proximity_LightWareSF40C::initialise()
|
||||
{
|
||||
// initialise sectors
|
||||
if (!_sector_initialised) {
|
||||
init_sectors();
|
||||
}
|
||||
|
||||
// exit immediately if we've sent initialisation requests in the last second
|
||||
uint32_t now_ms = AP_HAL::millis();
|
||||
if ((now_ms - _last_request_ms) < 1000) {
|
||||
return;
|
||||
}
|
||||
_last_request_ms = now_ms;
|
||||
|
||||
// re-fetch motor state
|
||||
request_motor_state();
|
||||
|
||||
// get token from sensor (required for reseting)
|
||||
if (!got_token()) {
|
||||
request_token();
|
||||
return;
|
||||
}
|
||||
|
||||
// if no replies in last 15 seconds reboot sensor
|
||||
if ((now_ms > 30000) && (now_ms - _last_reply_ms > 15000)) {
|
||||
restart_sensor();
|
||||
return;
|
||||
}
|
||||
|
||||
// if motor is starting up give more time to succeed or fail
|
||||
if ((_sensor_state.motor_state != MotorState::RUNNING_NORMALLY) &&
|
||||
(_sensor_state.motor_state != MotorState::FAILED_TO_COMMUNICATE)) {
|
||||
return;
|
||||
}
|
||||
|
||||
// if motor fails, reset sensor and re-try everything
|
||||
if (_sensor_state.motor_state == MotorState::FAILED_TO_COMMUNICATE) {
|
||||
restart_sensor();
|
||||
return;
|
||||
}
|
||||
|
||||
// motor is running correctly (motor_state is RUNNING_NORMALLY) so request start of streaming
|
||||
if (!_sensor_state.streaming || (_sensor_state.output_rate != PROXIMITY_SF40C_DESIRED_OUTPUT_RATE)) {
|
||||
request_stream_start();
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// restart sensor and re-init our state
|
||||
void AP_Proximity_LightWareSF40C::restart_sensor()
|
||||
{
|
||||
// return immediately if no token or a restart has been requested within the last 30sec
|
||||
uint32_t now_ms = AP_HAL::millis();
|
||||
if ((_last_restart_ms != 0) && ((now_ms - _last_restart_ms) < 30000)) {
|
||||
return;
|
||||
}
|
||||
|
||||
// restart sensor and re-initialise sensor state
|
||||
request_reset();
|
||||
clear_token();
|
||||
_last_restart_ms = now_ms;
|
||||
_sensor_state.motor_state = MotorState::UNKNOWN;
|
||||
_sensor_state.streaming = false;
|
||||
_sensor_state.output_rate = 0;
|
||||
}
|
||||
|
||||
// initialise sector angles using user defined ignore areas
|
||||
void AP_Proximity_LightWareSF40C::init_sectors()
|
||||
{
|
||||
// use defaults if no ignore areas defined
|
||||
uint8_t ignore_area_count = get_ignore_area_count();
|
||||
if (ignore_area_count == 0) {
|
||||
_sector_initialised = true;
|
||||
return;
|
||||
}
|
||||
|
||||
uint8_t sector = 0;
|
||||
|
||||
for (uint8_t i=0; i<ignore_area_count; i++) {
|
||||
|
||||
// get ignore area info
|
||||
uint16_t ign_area_angle;
|
||||
uint8_t ign_area_width;
|
||||
if (get_ignore_area(i, ign_area_angle, ign_area_width)) {
|
||||
|
||||
// calculate how many degrees of space we have between this end of this ignore area and the start of the end
|
||||
int16_t start_angle, end_angle;
|
||||
get_next_ignore_start_or_end(1, ign_area_angle, start_angle);
|
||||
get_next_ignore_start_or_end(0, start_angle, end_angle);
|
||||
int16_t degrees_to_fill = wrap_360(end_angle - start_angle);
|
||||
|
||||
// divide up the area into sectors
|
||||
while ((degrees_to_fill > 0) && (sector < PROXIMITY_SECTORS_MAX)) {
|
||||
uint16_t sector_size;
|
||||
if (degrees_to_fill >= 90) {
|
||||
// set sector to maximum of 45 degrees
|
||||
sector_size = 45;
|
||||
} else if (degrees_to_fill > 45) {
|
||||
// use half the remaining area to optimise size of this sector and the next
|
||||
sector_size = degrees_to_fill / 2.0f;
|
||||
} else {
|
||||
// 45 degrees or less are left so put it all into the next sector
|
||||
sector_size = degrees_to_fill;
|
||||
}
|
||||
// record the sector middle and width
|
||||
_sector_middle_deg[sector] = wrap_360(start_angle + sector_size / 2.0f);
|
||||
_sector_width_deg[sector] = sector_size;
|
||||
|
||||
// move onto next sector
|
||||
start_angle += sector_size;
|
||||
sector++;
|
||||
degrees_to_fill -= sector_size;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// set num sectors
|
||||
_num_sectors = sector;
|
||||
|
||||
// re-initialise boundary because sector locations have changed
|
||||
init_boundary();
|
||||
|
||||
// record success
|
||||
_sector_initialised = true;
|
||||
}
|
||||
|
||||
// send message to sensor
|
||||
void AP_Proximity_LightWareSF40C::send_message(MessageID msgid, bool write, const uint8_t *payload, uint16_t payload_len)
|
||||
{
|
||||
if ((_uart == nullptr) || (payload_len > PROXIMITY_SF40C_PAYLOAD_LEN_MAX)) {
|
||||
return;
|
||||
}
|
||||
|
||||
// check for sufficient space in outgoing buffer
|
||||
if (_uart->txspace() < payload_len + 6U) {
|
||||
return;
|
||||
}
|
||||
|
||||
// write header
|
||||
_uart->write((uint8_t)PROXIMITY_SF40C_HEADER);
|
||||
uint16_t crc = crc_xmodem_update(0, PROXIMITY_SF40C_HEADER);
|
||||
|
||||
// write flags including payload length
|
||||
const uint16_t flags = ((payload_len+1) << 6) | (write ? 0x01 : 0);
|
||||
_uart->write(LOWBYTE(flags));
|
||||
crc = crc_xmodem_update(crc, LOWBYTE(flags));
|
||||
_uart->write(HIGHBYTE(flags));
|
||||
crc = crc_xmodem_update(crc, HIGHBYTE(flags));
|
||||
|
||||
// msgid
|
||||
_uart->write((uint8_t)msgid);
|
||||
crc = crc_xmodem_update(crc, (uint8_t)msgid);
|
||||
|
||||
// payload
|
||||
if ((payload_len > 0) && (payload != nullptr)) {
|
||||
for (uint16_t i = 0; i < payload_len; i++) {
|
||||
_uart->write(payload[i]);
|
||||
crc = crc_xmodem_update(crc, payload[i]);
|
||||
}
|
||||
}
|
||||
|
||||
// checksum
|
||||
_uart->write(LOWBYTE(crc));
|
||||
_uart->write(HIGHBYTE(crc));
|
||||
}
|
||||
|
||||
// request motor state
|
||||
void AP_Proximity_LightWareSF40C::request_motor_state()
|
||||
{
|
||||
send_message(MessageID::MOTOR_STATE, false, (const uint8_t *)nullptr, 0);
|
||||
}
|
||||
|
||||
// request start of streaming of distances
|
||||
void AP_Proximity_LightWareSF40C::request_stream_start()
|
||||
{
|
||||
// request output rate
|
||||
const uint8_t desired_rate = PROXIMITY_SF40C_DESIRED_OUTPUT_RATE; // 0 = 20010, 1 = 10005, 2 = 6670, 3 = 2001
|
||||
send_message(MessageID::OUTPUT_RATE, true, &desired_rate, sizeof(desired_rate));
|
||||
|
||||
// request streaming to start
|
||||
const le32_t val = htole32(3);
|
||||
send_message(MessageID::STREAM, true, (const uint8_t*)&val, sizeof(val));
|
||||
}
|
||||
|
||||
// request token of sensor
|
||||
void AP_Proximity_LightWareSF40C::request_token()
|
||||
{
|
||||
// request token
|
||||
send_message(MessageID::TOKEN, false, nullptr, 0);
|
||||
}
|
||||
|
||||
// request reset of sensor
|
||||
void AP_Proximity_LightWareSF40C::request_reset()
|
||||
{
|
||||
// send reset request
|
||||
send_message(MessageID::RESET, true, _sensor_state.token, ARRAY_SIZE(_sensor_state.token));
|
||||
}
|
||||
|
||||
// check for replies from sensor
|
||||
void AP_Proximity_LightWareSF40C::process_replies()
|
||||
{
|
||||
if (_uart == nullptr) {
|
||||
return;
|
||||
}
|
||||
|
||||
int16_t nbytes = _uart->available();
|
||||
while (nbytes-- > 0) {
|
||||
const int16_t r = _uart->read();
|
||||
if ((r < 0) || (r > 0xFF)) {
|
||||
continue;
|
||||
}
|
||||
parse_byte((uint8_t)r);
|
||||
}
|
||||
}
|
||||
|
||||
// process one byte received on serial port
|
||||
// returns true if a message has been successfully parsed
|
||||
// state is stored in _msg structure
|
||||
void AP_Proximity_LightWareSF40C::parse_byte(uint8_t b)
|
||||
{
|
||||
// check that payload buffer is large enough
|
||||
static_assert(ARRAY_SIZE(_msg.payload) == PROXIMITY_SF40C_PAYLOAD_LEN_MAX, "AP_Proximity_LightwareSF40C: check _msg.payload array size ");
|
||||
|
||||
// process byte depending upon current state
|
||||
switch (_msg.state) {
|
||||
|
||||
case ParseState::HEADER:
|
||||
if (b == PROXIMITY_SF40C_HEADER) {
|
||||
_msg.crc_expected = crc_xmodem_update(0, b);
|
||||
_msg.state = ParseState::FLAGS_L;
|
||||
}
|
||||
break;
|
||||
|
||||
case ParseState::FLAGS_L:
|
||||
_msg.flags_low = b;
|
||||
_msg.crc_expected = crc_xmodem_update(_msg.crc_expected, b);
|
||||
_msg.state = ParseState::FLAGS_H;
|
||||
break;
|
||||
|
||||
case ParseState::FLAGS_H:
|
||||
_msg.flags_high = b;
|
||||
_msg.crc_expected = crc_xmodem_update(_msg.crc_expected, b);
|
||||
_msg.payload_len = UINT16_VALUE(_msg.flags_high, _msg.flags_low) >> 6;
|
||||
if ((_msg.payload_len == 0) || (_msg.payload_len > PROXIMITY_SF40C_PAYLOAD_LEN_MAX)) {
|
||||
// invalid payload length, abandon message
|
||||
_msg.state = ParseState::HEADER;
|
||||
} else {
|
||||
_msg.state = ParseState::MSG_ID;
|
||||
}
|
||||
break;
|
||||
|
||||
case ParseState::MSG_ID:
|
||||
_msg.msgid = (MessageID)b;
|
||||
_msg.crc_expected = crc_xmodem_update(_msg.crc_expected, b);
|
||||
if (_msg.payload_len > 1) {
|
||||
_msg.state = ParseState::PAYLOAD;
|
||||
} else {
|
||||
_msg.state = ParseState::CRC_L;
|
||||
}
|
||||
_msg.payload_recv = 0;
|
||||
break;
|
||||
|
||||
case ParseState::PAYLOAD:
|
||||
if (_msg.payload_recv < (_msg.payload_len - 1)) {
|
||||
_msg.payload[_msg.payload_recv] = b;
|
||||
_msg.payload_recv++;
|
||||
_msg.crc_expected = crc_xmodem_update(_msg.crc_expected, b);
|
||||
}
|
||||
if (_msg.payload_recv >= (_msg.payload_len - 1)) {
|
||||
_msg.state = ParseState::CRC_L;
|
||||
}
|
||||
break;
|
||||
|
||||
case ParseState::CRC_L:
|
||||
_msg.crc_low = b;
|
||||
_msg.state = ParseState::CRC_H;
|
||||
break;
|
||||
|
||||
case ParseState::CRC_H:
|
||||
_msg.crc_high = b;
|
||||
if (_msg.crc_expected == UINT16_VALUE(_msg.crc_high, _msg.crc_low)) {
|
||||
process_message();
|
||||
_last_reply_ms = AP_HAL::millis();
|
||||
}
|
||||
_msg.state = ParseState::HEADER;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// process the latest message held in the _msg structure
|
||||
void AP_Proximity_LightWareSF40C::process_message()
|
||||
{
|
||||
// process payload
|
||||
switch (_msg.msgid) {
|
||||
case MessageID::TOKEN:
|
||||
// copy token into _sensor_state.token variable
|
||||
if (_msg.payload_recv == ARRAY_SIZE(_sensor_state.token)) {
|
||||
memcpy(_sensor_state.token, _msg.payload, ARRAY_SIZE(_sensor_state.token));
|
||||
}
|
||||
break;
|
||||
case MessageID::RESET:
|
||||
// no need to do anything
|
||||
break;
|
||||
case MessageID::STREAM:
|
||||
if (_msg.payload_recv == sizeof(uint32_t)) {
|
||||
_sensor_state.streaming = (buff_to_uint32(_msg.payload[0], _msg.payload[1], _msg.payload[2], _msg.payload[3]) == 3);
|
||||
}
|
||||
break;
|
||||
case MessageID::DISTANCE_OUTPUT: {
|
||||
_last_distance_received_ms = AP_HAL::millis();
|
||||
const uint16_t point_total = buff_to_uint16(_msg.payload[8], _msg.payload[9]);
|
||||
const uint16_t point_count = buff_to_uint16(_msg.payload[10], _msg.payload[11]);
|
||||
const uint16_t point_start_index = buff_to_uint16(_msg.payload[12], _msg.payload[13]);
|
||||
// sanity check point_total
|
||||
if (point_total == 0) {
|
||||
break;
|
||||
}
|
||||
|
||||
// prepare to push to object database
|
||||
Location current_loc;
|
||||
float current_vehicle_bearing;
|
||||
const bool database_ready = database_prepare_for_push(current_loc, current_vehicle_bearing);
|
||||
|
||||
// process each point
|
||||
const float angle_inc_deg = (1.0f / point_total) * 360.0f;
|
||||
const float angle_sign = (frontend.get_orientation(state.instance) == 1) ? -1.0f : 1.0f;
|
||||
const float angle_correction = frontend.get_yaw_correction(state.instance);
|
||||
const uint16_t dist_min_cm = distance_min() * 100;
|
||||
const uint16_t dist_max_cm = distance_max() * 100;
|
||||
for (uint16_t i = 0; i < point_count; i++) {
|
||||
const uint16_t idx = 14 + (i * 2);
|
||||
const int16_t dist_cm = (int16_t)buff_to_uint16(_msg.payload[idx], _msg.payload[idx+1]);
|
||||
const float angle_deg = wrap_360((point_start_index + i) * angle_inc_deg * angle_sign + angle_correction);
|
||||
uint8_t sector;
|
||||
if (convert_angle_to_sector(angle_deg, sector)) {
|
||||
if (sector != _last_sector) {
|
||||
// update boundary used for avoidance
|
||||
if (_last_sector != UINT8_MAX) {
|
||||
update_boundary_for_sector(_last_sector, false);
|
||||
}
|
||||
_last_sector = sector;
|
||||
// init for new sector
|
||||
_distance[sector] = INT16_MAX;
|
||||
_distance_valid[sector] = false;
|
||||
}
|
||||
if ((dist_cm >= dist_min_cm) && (dist_cm <= dist_max_cm)) {
|
||||
// use shortest valid distance for this sector's distance
|
||||
const float dist_m = dist_cm * 0.01f;
|
||||
if (dist_m < _distance[sector]) {
|
||||
_angle[sector] = angle_deg;
|
||||
_distance[sector] = dist_m;
|
||||
_distance_valid[sector] = true;
|
||||
}
|
||||
// send point to object avoidance database
|
||||
if (database_ready) {
|
||||
database_push(angle_deg, dist_m, _last_distance_received_ms, current_loc, current_vehicle_bearing);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
case MessageID::MOTOR_STATE:
|
||||
if (_msg.payload_recv == 1) {
|
||||
_sensor_state.motor_state = (MotorState)_msg.payload[0];
|
||||
}
|
||||
break;
|
||||
case MessageID::OUTPUT_RATE:
|
||||
if (_msg.payload_recv == 1) {
|
||||
_sensor_state.output_rate = _msg.payload[0];
|
||||
}
|
||||
break;
|
||||
|
||||
// unsupported messages
|
||||
case MessageID::PRODUCT_NAME:
|
||||
case MessageID::HARDWARE_VERSION:
|
||||
case MessageID::FIRMWARE_VERSION:
|
||||
case MessageID::SERIAL_NUMBER:
|
||||
case MessageID::TEXT_MESSAGE:
|
||||
case MessageID::USER_DATA:
|
||||
case MessageID::SAVE_PARAMETERS:
|
||||
case MessageID::STAGE_FIRMWARE:
|
||||
case MessageID::COMMIT_FIRMWARE:
|
||||
case MessageID::INCOMING_VOLTAGE:
|
||||
case MessageID::LASER_FIRING:
|
||||
case MessageID::TEMPERATURE:
|
||||
case MessageID::BAUD_RATE:
|
||||
case MessageID::DISTANCE:
|
||||
case MessageID::MOTOR_VOLTAGE:
|
||||
case MessageID::FORWARD_OFFSET:
|
||||
case MessageID::REVOLUTIONS:
|
||||
case MessageID::ALARM_STATE:
|
||||
case MessageID::ALARM1:
|
||||
case MessageID::ALARM2:
|
||||
case MessageID::ALARM3:
|
||||
case MessageID::ALARM4:
|
||||
case MessageID::ALARM5:
|
||||
case MessageID::ALARM6:
|
||||
case MessageID::ALARM7:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// convert buffer to uint32, uint16
|
||||
uint32_t AP_Proximity_LightWareSF40C::buff_to_uint32(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3) const
|
||||
{
|
||||
uint32_t leval = (uint32_t)b0 | (uint32_t)b1 << 8 | (uint32_t)b2 << 16 | (uint32_t)b3 << 24;
|
||||
return leval;
|
||||
}
|
||||
|
||||
uint16_t AP_Proximity_LightWareSF40C::buff_to_uint16(uint8_t b0, uint8_t b1) const
|
||||
{
|
||||
uint16_t leval = (uint16_t)b0 | (uint16_t)b1 << 8;
|
||||
return leval;
|
||||
}
|
151
libraries/AP_Proximity/AP_Proximity_LightWareSF40C.h
Normal file
151
libraries/AP_Proximity/AP_Proximity_LightWareSF40C.h
Normal file
@ -0,0 +1,151 @@
|
||||
#pragma once
|
||||
|
||||
#include "AP_Proximity.h"
|
||||
#include "AP_Proximity_Backend.h"
|
||||
|
||||
#define PROXIMITY_SF40C_TIMEOUT_MS 200 // requests timeout after 0.2 seconds
|
||||
#define PROXIMITY_SF40C_PAYLOAD_LEN_MAX 256 // maximum payload size we can accept (in some configurations sensor may send as large as 1023)
|
||||
|
||||
class AP_Proximity_LightWareSF40C : public AP_Proximity_Backend
|
||||
{
|
||||
|
||||
public:
|
||||
// constructor
|
||||
AP_Proximity_LightWareSF40C(AP_Proximity &_frontend,
|
||||
AP_Proximity::Proximity_State &_state);
|
||||
|
||||
// static detection function
|
||||
static bool detect();
|
||||
|
||||
// update state
|
||||
void update(void) override;
|
||||
|
||||
// get maximum and minimum distances (in meters) of sensor
|
||||
float distance_max() const override { return 100.0f; }
|
||||
float distance_min() const override { return 0.20f; }
|
||||
|
||||
private:
|
||||
|
||||
// initialise sensor
|
||||
void initialise();
|
||||
void init_sectors();
|
||||
|
||||
// restart sensor and re-init our state
|
||||
void restart_sensor();
|
||||
|
||||
// message ids
|
||||
enum class MessageID : uint8_t {
|
||||
PRODUCT_NAME = 0,
|
||||
HARDWARE_VERSION = 1,
|
||||
FIRMWARE_VERSION = 2,
|
||||
SERIAL_NUMBER = 3,
|
||||
TEXT_MESSAGE = 7,
|
||||
USER_DATA = 9,
|
||||
TOKEN = 10,
|
||||
SAVE_PARAMETERS = 12,
|
||||
RESET = 14,
|
||||
STAGE_FIRMWARE = 16,
|
||||
COMMIT_FIRMWARE = 17,
|
||||
INCOMING_VOLTAGE = 20,
|
||||
STREAM = 30,
|
||||
DISTANCE_OUTPUT = 48,
|
||||
LASER_FIRING = 50,
|
||||
TEMPERATURE = 55,
|
||||
BAUD_RATE = 90,
|
||||
DISTANCE = 105,
|
||||
MOTOR_STATE = 106,
|
||||
MOTOR_VOLTAGE = 107,
|
||||
OUTPUT_RATE = 108,
|
||||
FORWARD_OFFSET = 109,
|
||||
REVOLUTIONS = 110,
|
||||
ALARM_STATE = 111,
|
||||
ALARM1 = 112,
|
||||
ALARM2 = 113,
|
||||
ALARM3 = 114,
|
||||
ALARM4 = 115,
|
||||
ALARM5 = 116,
|
||||
ALARM6 = 117,
|
||||
ALARM7 = 118
|
||||
};
|
||||
|
||||
// motor states
|
||||
enum class MotorState : uint8_t {
|
||||
UNKNOWN = 0,
|
||||
PREPARING_FOR_STARTUP = 1,
|
||||
WAITING_FOR_FIVE_REVS = 2,
|
||||
RUNNING_NORMALLY = 3,
|
||||
FAILED_TO_COMMUNICATE = 4
|
||||
};
|
||||
|
||||
// send message to sensor
|
||||
void send_message(MessageID msgid, bool write, const uint8_t *payload, uint16_t payload_len);
|
||||
|
||||
// request motor state
|
||||
void request_motor_state();
|
||||
|
||||
// request start of streaming of distances
|
||||
void request_stream_start();
|
||||
|
||||
// request token of sensor (required for reset)
|
||||
void request_token();
|
||||
bool got_token() const { return (_sensor_state.token[0] != 0 || _sensor_state.token[1] != 0); }
|
||||
void clear_token() { memset(_sensor_state.token, 0, ARRAY_SIZE(_sensor_state.token)); }
|
||||
|
||||
// request reset of sensor
|
||||
void request_reset();
|
||||
|
||||
// check and process replies from sensor
|
||||
void process_replies();
|
||||
|
||||
// process one byte received on serial port
|
||||
// state is stored in msg structure. when a full package is received process_message is called
|
||||
void parse_byte(uint8_t b);
|
||||
|
||||
// process the latest message held in the msg structure
|
||||
void process_message();
|
||||
|
||||
// internal variables
|
||||
AP_HAL::UARTDriver *_uart; // uart for communicating with sensor
|
||||
bool _sector_initialised; // true if sectors have been initialised
|
||||
uint32_t _last_request_ms; // system time of last request
|
||||
uint32_t _last_reply_ms; // system time of last valid reply
|
||||
uint32_t _last_restart_ms; // system time we restarted the sensor
|
||||
uint32_t _last_distance_received_ms; // system time of last distance measurement received from sensor
|
||||
uint8_t _last_sector = UINT8_MAX; // sector of last distance_cm
|
||||
|
||||
// state of sensor
|
||||
struct {
|
||||
MotorState motor_state; // motor state (1=starting-up,2=waiting for first 5 revs, 3=normal, 4=comm failure)
|
||||
uint8_t output_rate; // output rate number (0 = 20010, 1 = 10005, 2 = 6670, 3 = 2001)
|
||||
bool streaming; // true if distance messages are being streamed
|
||||
uint8_t token[2]; // token (supplied by sensor) required for reset
|
||||
} _sensor_state;
|
||||
|
||||
enum class ParseState {
|
||||
HEADER = 0,
|
||||
FLAGS_L,
|
||||
FLAGS_H,
|
||||
MSG_ID,
|
||||
PAYLOAD,
|
||||
CRC_L,
|
||||
CRC_H
|
||||
};
|
||||
|
||||
// structure holding latest message contents
|
||||
struct {
|
||||
ParseState state; // state of incoming message processing
|
||||
uint8_t flags_low; // flags low byte
|
||||
uint8_t flags_high; // flags high byte
|
||||
uint16_t payload_len; // latest message payload length (1+ bytes in payload)
|
||||
uint8_t payload[PROXIMITY_SF40C_PAYLOAD_LEN_MAX]; // payload
|
||||
MessageID msgid; // latest message's message id
|
||||
uint16_t payload_recv; // number of message's payload bytes received so far
|
||||
uint8_t crc_low; // crc low byte
|
||||
uint8_t crc_high; // crc high byte
|
||||
uint16_t crc_expected; // latest message's expected crc
|
||||
} _msg;
|
||||
|
||||
// convert buffer to uint32, uint16
|
||||
uint32_t buff_to_uint32(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3) const;
|
||||
uint16_t buff_to_uint16(uint8_t b0, uint8_t b1) const;
|
||||
};
|
Loading…
Reference in New Issue
Block a user