cpython/Lib/test/test_set.py

1923 lines
65 KiB
Python

import unittest
from test import support
from test.support import warnings_helper
import gc
import weakref
import operator
import copy
import pickle
from random import randrange, shuffle
import warnings
import collections
import collections.abc
import itertools
class PassThru(Exception):
pass
def check_pass_thru():
raise PassThru
yield 1
class BadCmp:
def __hash__(self):
return 1
def __eq__(self, other):
raise RuntimeError
class ReprWrapper:
'Used to test self-referential repr() calls'
def __repr__(self):
return repr(self.value)
class HashCountingInt(int):
'int-like object that counts the number of times __hash__ is called'
def __init__(self, *args):
self.hash_count = 0
def __hash__(self):
self.hash_count += 1
return int.__hash__(self)
class TestJointOps:
# Tests common to both set and frozenset
def setUp(self):
self.word = word = 'simsalabim'
self.otherword = 'madagascar'
self.letters = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
self.s = self.thetype(word)
self.d = dict.fromkeys(word)
def test_new_or_init(self):
self.assertRaises(TypeError, self.thetype, [], 2)
self.assertRaises(TypeError, set().__init__, a=1)
def test_uniquification(self):
actual = sorted(self.s)
expected = sorted(self.d)
self.assertEqual(actual, expected)
self.assertRaises(PassThru, self.thetype, check_pass_thru())
self.assertRaises(TypeError, self.thetype, [[]])
def test_len(self):
self.assertEqual(len(self.s), len(self.d))
def test_contains(self):
for c in self.letters:
self.assertEqual(c in self.s, c in self.d)
self.assertRaises(TypeError, self.s.__contains__, [[]])
s = self.thetype([frozenset(self.letters)])
self.assertIn(self.thetype(self.letters), s)
def test_union(self):
u = self.s.union(self.otherword)
for c in self.letters:
self.assertEqual(c in u, c in self.d or c in self.otherword)
self.assertEqual(self.s, self.thetype(self.word))
self.assertEqual(type(u), self.basetype)
self.assertRaises(PassThru, self.s.union, check_pass_thru())
self.assertRaises(TypeError, self.s.union, [[]])
for C in set, frozenset, dict.fromkeys, str, list, tuple:
self.assertEqual(self.thetype('abcba').union(C('cdc')), set('abcd'))
self.assertEqual(self.thetype('abcba').union(C('efgfe')), set('abcefg'))
self.assertEqual(self.thetype('abcba').union(C('ccb')), set('abc'))
self.assertEqual(self.thetype('abcba').union(C('ef')), set('abcef'))
self.assertEqual(self.thetype('abcba').union(C('ef'), C('fg')), set('abcefg'))
# Issue #6573
x = self.thetype()
self.assertEqual(x.union(set([1]), x, set([2])), self.thetype([1, 2]))
def test_or(self):
i = self.s.union(self.otherword)
self.assertEqual(self.s | set(self.otherword), i)
self.assertEqual(self.s | frozenset(self.otherword), i)
try:
self.s | self.otherword
except TypeError:
pass
else:
self.fail("s|t did not screen-out general iterables")
def test_intersection(self):
i = self.s.intersection(self.otherword)
for c in self.letters:
self.assertEqual(c in i, c in self.d and c in self.otherword)
self.assertEqual(self.s, self.thetype(self.word))
self.assertEqual(type(i), self.basetype)
self.assertRaises(PassThru, self.s.intersection, check_pass_thru())
for C in set, frozenset, dict.fromkeys, str, list, tuple:
self.assertEqual(self.thetype('abcba').intersection(C('cdc')), set('cc'))
self.assertEqual(self.thetype('abcba').intersection(C('efgfe')), set(''))
self.assertEqual(self.thetype('abcba').intersection(C('ccb')), set('bc'))
self.assertEqual(self.thetype('abcba').intersection(C('ef')), set(''))
self.assertEqual(self.thetype('abcba').intersection(C('cbcf'), C('bag')), set('b'))
s = self.thetype('abcba')
z = s.intersection()
if self.thetype == frozenset():
self.assertEqual(id(s), id(z))
else:
self.assertNotEqual(id(s), id(z))
def test_isdisjoint(self):
def f(s1, s2):
'Pure python equivalent of isdisjoint()'
return not set(s1).intersection(s2)
for larg in '', 'a', 'ab', 'abc', 'ababac', 'cdc', 'cc', 'efgfe', 'ccb', 'ef':
s1 = self.thetype(larg)
for rarg in '', 'a', 'ab', 'abc', 'ababac', 'cdc', 'cc', 'efgfe', 'ccb', 'ef':
for C in set, frozenset, dict.fromkeys, str, list, tuple:
s2 = C(rarg)
actual = s1.isdisjoint(s2)
expected = f(s1, s2)
self.assertEqual(actual, expected)
self.assertTrue(actual is True or actual is False)
def test_and(self):
i = self.s.intersection(self.otherword)
self.assertEqual(self.s & set(self.otherword), i)
self.assertEqual(self.s & frozenset(self.otherword), i)
try:
self.s & self.otherword
except TypeError:
pass
else:
self.fail("s&t did not screen-out general iterables")
def test_difference(self):
i = self.s.difference(self.otherword)
for c in self.letters:
self.assertEqual(c in i, c in self.d and c not in self.otherword)
self.assertEqual(self.s, self.thetype(self.word))
self.assertEqual(type(i), self.basetype)
self.assertRaises(PassThru, self.s.difference, check_pass_thru())
self.assertRaises(TypeError, self.s.difference, [[]])
for C in set, frozenset, dict.fromkeys, str, list, tuple:
self.assertEqual(self.thetype('abcba').difference(C('cdc')), set('ab'))
self.assertEqual(self.thetype('abcba').difference(C('efgfe')), set('abc'))
self.assertEqual(self.thetype('abcba').difference(C('ccb')), set('a'))
self.assertEqual(self.thetype('abcba').difference(C('ef')), set('abc'))
self.assertEqual(self.thetype('abcba').difference(), set('abc'))
self.assertEqual(self.thetype('abcba').difference(C('a'), C('b')), set('c'))
def test_sub(self):
i = self.s.difference(self.otherword)
self.assertEqual(self.s - set(self.otherword), i)
self.assertEqual(self.s - frozenset(self.otherword), i)
try:
self.s - self.otherword
except TypeError:
pass
else:
self.fail("s-t did not screen-out general iterables")
def test_symmetric_difference(self):
i = self.s.symmetric_difference(self.otherword)
for c in self.letters:
self.assertEqual(c in i, (c in self.d) ^ (c in self.otherword))
self.assertEqual(self.s, self.thetype(self.word))
self.assertEqual(type(i), self.basetype)
self.assertRaises(PassThru, self.s.symmetric_difference, check_pass_thru())
self.assertRaises(TypeError, self.s.symmetric_difference, [[]])
for C in set, frozenset, dict.fromkeys, str, list, tuple:
self.assertEqual(self.thetype('abcba').symmetric_difference(C('cdc')), set('abd'))
self.assertEqual(self.thetype('abcba').symmetric_difference(C('efgfe')), set('abcefg'))
self.assertEqual(self.thetype('abcba').symmetric_difference(C('ccb')), set('a'))
self.assertEqual(self.thetype('abcba').symmetric_difference(C('ef')), set('abcef'))
def test_xor(self):
i = self.s.symmetric_difference(self.otherword)
self.assertEqual(self.s ^ set(self.otherword), i)
self.assertEqual(self.s ^ frozenset(self.otherword), i)
try:
self.s ^ self.otherword
except TypeError:
pass
else:
self.fail("s^t did not screen-out general iterables")
def test_equality(self):
self.assertEqual(self.s, set(self.word))
self.assertEqual(self.s, frozenset(self.word))
self.assertEqual(self.s == self.word, False)
self.assertNotEqual(self.s, set(self.otherword))
self.assertNotEqual(self.s, frozenset(self.otherword))
self.assertEqual(self.s != self.word, True)
def test_setOfFrozensets(self):
t = map(frozenset, ['abcdef', 'bcd', 'bdcb', 'fed', 'fedccba'])
s = self.thetype(t)
self.assertEqual(len(s), 3)
def test_sub_and_super(self):
p, q, r = map(self.thetype, ['ab', 'abcde', 'def'])
self.assertTrue(p < q)
self.assertTrue(p <= q)
self.assertTrue(q <= q)
self.assertTrue(q > p)
self.assertTrue(q >= p)
self.assertFalse(q < r)
self.assertFalse(q <= r)
self.assertFalse(q > r)
self.assertFalse(q >= r)
self.assertTrue(set('a').issubset('abc'))
self.assertTrue(set('abc').issuperset('a'))
self.assertFalse(set('a').issubset('cbs'))
self.assertFalse(set('cbs').issuperset('a'))
def test_pickling(self):
for i in range(pickle.HIGHEST_PROTOCOL + 1):
p = pickle.dumps(self.s, i)
dup = pickle.loads(p)
self.assertEqual(self.s, dup, "%s != %s" % (self.s, dup))
if type(self.s) not in (set, frozenset):
self.s.x = 10
p = pickle.dumps(self.s, i)
dup = pickle.loads(p)
self.assertEqual(self.s.x, dup.x)
def test_iterator_pickling(self):
for proto in range(pickle.HIGHEST_PROTOCOL + 1):
itorg = iter(self.s)
data = self.thetype(self.s)
d = pickle.dumps(itorg, proto)
it = pickle.loads(d)
# Set iterators unpickle as list iterators due to the
# undefined order of set items.
# self.assertEqual(type(itorg), type(it))
self.assertIsInstance(it, collections.abc.Iterator)
self.assertEqual(self.thetype(it), data)
it = pickle.loads(d)
try:
drop = next(it)
except StopIteration:
continue
d = pickle.dumps(it, proto)
it = pickle.loads(d)
self.assertEqual(self.thetype(it), data - self.thetype((drop,)))
def test_deepcopy(self):
class Tracer:
def __init__(self, value):
self.value = value
def __hash__(self):
return self.value
def __deepcopy__(self, memo=None):
return Tracer(self.value + 1)
t = Tracer(10)
s = self.thetype([t])
dup = copy.deepcopy(s)
self.assertNotEqual(id(s), id(dup))
for elem in dup:
newt = elem
self.assertNotEqual(id(t), id(newt))
self.assertEqual(t.value + 1, newt.value)
def test_gc(self):
# Create a nest of cycles to exercise overall ref count check
class A:
pass
s = set(A() for i in range(1000))
for elem in s:
elem.cycle = s
elem.sub = elem
elem.set = set([elem])
def test_subclass_with_custom_hash(self):
# Bug #1257731
class H(self.thetype):
def __hash__(self):
return int(id(self) & 0x7fffffff)
s=H()
f=set()
f.add(s)
self.assertIn(s, f)
f.remove(s)
f.add(s)
f.discard(s)
def test_badcmp(self):
s = self.thetype([BadCmp()])
# Detect comparison errors during insertion and lookup
self.assertRaises(RuntimeError, self.thetype, [BadCmp(), BadCmp()])
self.assertRaises(RuntimeError, s.__contains__, BadCmp())
# Detect errors during mutating operations
if hasattr(s, 'add'):
self.assertRaises(RuntimeError, s.add, BadCmp())
self.assertRaises(RuntimeError, s.discard, BadCmp())
self.assertRaises(RuntimeError, s.remove, BadCmp())
def test_cyclical_repr(self):
w = ReprWrapper()
s = self.thetype([w])
w.value = s
if self.thetype == set:
self.assertEqual(repr(s), '{set(...)}')
else:
name = repr(s).partition('(')[0] # strip class name
self.assertEqual(repr(s), '%s({%s(...)})' % (name, name))
def test_do_not_rehash_dict_keys(self):
n = 10
d = dict.fromkeys(map(HashCountingInt, range(n)))
self.assertEqual(sum(elem.hash_count for elem in d), n)
s = self.thetype(d)
self.assertEqual(sum(elem.hash_count for elem in d), n)
s.difference(d)
self.assertEqual(sum(elem.hash_count for elem in d), n)
if hasattr(s, 'symmetric_difference_update'):
s.symmetric_difference_update(d)
self.assertEqual(sum(elem.hash_count for elem in d), n)
d2 = dict.fromkeys(set(d))
self.assertEqual(sum(elem.hash_count for elem in d), n)
d3 = dict.fromkeys(frozenset(d))
self.assertEqual(sum(elem.hash_count for elem in d), n)
d3 = dict.fromkeys(frozenset(d), 123)
self.assertEqual(sum(elem.hash_count for elem in d), n)
self.assertEqual(d3, dict.fromkeys(d, 123))
def test_container_iterator(self):
# Bug #3680: tp_traverse was not implemented for set iterator object
class C(object):
pass
obj = C()
ref = weakref.ref(obj)
container = set([obj, 1])
obj.x = iter(container)
del obj, container
gc.collect()
self.assertTrue(ref() is None, "Cycle was not collected")
def test_free_after_iterating(self):
support.check_free_after_iterating(self, iter, self.thetype)
class TestSet(TestJointOps, unittest.TestCase):
thetype = set
basetype = set
def test_init(self):
s = self.thetype()
s.__init__(self.word)
self.assertEqual(s, set(self.word))
s.__init__(self.otherword)
self.assertEqual(s, set(self.otherword))
self.assertRaises(TypeError, s.__init__, s, 2)
self.assertRaises(TypeError, s.__init__, 1)
def test_constructor_identity(self):
s = self.thetype(range(3))
t = self.thetype(s)
self.assertNotEqual(id(s), id(t))
def test_set_literal(self):
s = set([1,2,3])
t = {1,2,3}
self.assertEqual(s, t)
def test_set_literal_insertion_order(self):
# SF Issue #26020 -- Expect left to right insertion
s = {1, 1.0, True}
self.assertEqual(len(s), 1)
stored_value = s.pop()
self.assertEqual(type(stored_value), int)
def test_set_literal_evaluation_order(self):
# Expect left to right expression evaluation
events = []
def record(obj):
events.append(obj)
s = {record(1), record(2), record(3)}
self.assertEqual(events, [1, 2, 3])
def test_hash(self):
self.assertRaises(TypeError, hash, self.s)
def test_clear(self):
self.s.clear()
self.assertEqual(self.s, set())
self.assertEqual(len(self.s), 0)
def test_copy(self):
dup = self.s.copy()
self.assertEqual(self.s, dup)
self.assertNotEqual(id(self.s), id(dup))
self.assertEqual(type(dup), self.basetype)
def test_add(self):
self.s.add('Q')
self.assertIn('Q', self.s)
dup = self.s.copy()
self.s.add('Q')
self.assertEqual(self.s, dup)
self.assertRaises(TypeError, self.s.add, [])
def test_remove(self):
self.s.remove('a')
self.assertNotIn('a', self.s)
self.assertRaises(KeyError, self.s.remove, 'Q')
self.assertRaises(TypeError, self.s.remove, [])
s = self.thetype([frozenset(self.word)])
self.assertIn(self.thetype(self.word), s)
s.remove(self.thetype(self.word))
self.assertNotIn(self.thetype(self.word), s)
self.assertRaises(KeyError, self.s.remove, self.thetype(self.word))
def test_remove_keyerror_unpacking(self):
# bug: www.python.org/sf/1576657
for v1 in ['Q', (1,)]:
try:
self.s.remove(v1)
except KeyError as e:
v2 = e.args[0]
self.assertEqual(v1, v2)
else:
self.fail()
def test_remove_keyerror_set(self):
key = self.thetype([3, 4])
try:
self.s.remove(key)
except KeyError as e:
self.assertTrue(e.args[0] is key,
"KeyError should be {0}, not {1}".format(key,
e.args[0]))
else:
self.fail()
def test_discard(self):
self.s.discard('a')
self.assertNotIn('a', self.s)
self.s.discard('Q')
self.assertRaises(TypeError, self.s.discard, [])
s = self.thetype([frozenset(self.word)])
self.assertIn(self.thetype(self.word), s)
s.discard(self.thetype(self.word))
self.assertNotIn(self.thetype(self.word), s)
s.discard(self.thetype(self.word))
def test_pop(self):
for i in range(len(self.s)):
elem = self.s.pop()
self.assertNotIn(elem, self.s)
self.assertRaises(KeyError, self.s.pop)
def test_update(self):
retval = self.s.update(self.otherword)
self.assertEqual(retval, None)
for c in (self.word + self.otherword):
self.assertIn(c, self.s)
self.assertRaises(PassThru, self.s.update, check_pass_thru())
self.assertRaises(TypeError, self.s.update, [[]])
for p, q in (('cdc', 'abcd'), ('efgfe', 'abcefg'), ('ccb', 'abc'), ('ef', 'abcef')):
for C in set, frozenset, dict.fromkeys, str, list, tuple:
s = self.thetype('abcba')
self.assertEqual(s.update(C(p)), None)
self.assertEqual(s, set(q))
for p in ('cdc', 'efgfe', 'ccb', 'ef', 'abcda'):
q = 'ahi'
for C in set, frozenset, dict.fromkeys, str, list, tuple:
s = self.thetype('abcba')
self.assertEqual(s.update(C(p), C(q)), None)
self.assertEqual(s, set(s) | set(p) | set(q))
def test_ior(self):
self.s |= set(self.otherword)
for c in (self.word + self.otherword):
self.assertIn(c, self.s)
def test_intersection_update(self):
retval = self.s.intersection_update(self.otherword)
self.assertEqual(retval, None)
for c in (self.word + self.otherword):
if c in self.otherword and c in self.word:
self.assertIn(c, self.s)
else:
self.assertNotIn(c, self.s)
self.assertRaises(PassThru, self.s.intersection_update, check_pass_thru())
self.assertRaises(TypeError, self.s.intersection_update, [[]])
for p, q in (('cdc', 'c'), ('efgfe', ''), ('ccb', 'bc'), ('ef', '')):
for C in set, frozenset, dict.fromkeys, str, list, tuple:
s = self.thetype('abcba')
self.assertEqual(s.intersection_update(C(p)), None)
self.assertEqual(s, set(q))
ss = 'abcba'
s = self.thetype(ss)
t = 'cbc'
self.assertEqual(s.intersection_update(C(p), C(t)), None)
self.assertEqual(s, set('abcba')&set(p)&set(t))
def test_iand(self):
self.s &= set(self.otherword)
for c in (self.word + self.otherword):
if c in self.otherword and c in self.word:
self.assertIn(c, self.s)
else:
self.assertNotIn(c, self.s)
def test_difference_update(self):
retval = self.s.difference_update(self.otherword)
self.assertEqual(retval, None)
for c in (self.word + self.otherword):
if c in self.word and c not in self.otherword:
self.assertIn(c, self.s)
else:
self.assertNotIn(c, self.s)
self.assertRaises(PassThru, self.s.difference_update, check_pass_thru())
self.assertRaises(TypeError, self.s.difference_update, [[]])
self.assertRaises(TypeError, self.s.symmetric_difference_update, [[]])
for p, q in (('cdc', 'ab'), ('efgfe', 'abc'), ('ccb', 'a'), ('ef', 'abc')):
for C in set, frozenset, dict.fromkeys, str, list, tuple:
s = self.thetype('abcba')
self.assertEqual(s.difference_update(C(p)), None)
self.assertEqual(s, set(q))
s = self.thetype('abcdefghih')
s.difference_update()
self.assertEqual(s, self.thetype('abcdefghih'))
s = self.thetype('abcdefghih')
s.difference_update(C('aba'))
self.assertEqual(s, self.thetype('cdefghih'))
s = self.thetype('abcdefghih')
s.difference_update(C('cdc'), C('aba'))
self.assertEqual(s, self.thetype('efghih'))
def test_isub(self):
self.s -= set(self.otherword)
for c in (self.word + self.otherword):
if c in self.word and c not in self.otherword:
self.assertIn(c, self.s)
else:
self.assertNotIn(c, self.s)
def test_symmetric_difference_update(self):
retval = self.s.symmetric_difference_update(self.otherword)
self.assertEqual(retval, None)
for c in (self.word + self.otherword):
if (c in self.word) ^ (c in self.otherword):
self.assertIn(c, self.s)
else:
self.assertNotIn(c, self.s)
self.assertRaises(PassThru, self.s.symmetric_difference_update, check_pass_thru())
self.assertRaises(TypeError, self.s.symmetric_difference_update, [[]])
for p, q in (('cdc', 'abd'), ('efgfe', 'abcefg'), ('ccb', 'a'), ('ef', 'abcef')):
for C in set, frozenset, dict.fromkeys, str, list, tuple:
s = self.thetype('abcba')
self.assertEqual(s.symmetric_difference_update(C(p)), None)
self.assertEqual(s, set(q))
def test_ixor(self):
self.s ^= set(self.otherword)
for c in (self.word + self.otherword):
if (c in self.word) ^ (c in self.otherword):
self.assertIn(c, self.s)
else:
self.assertNotIn(c, self.s)
def test_inplace_on_self(self):
t = self.s.copy()
t |= t
self.assertEqual(t, self.s)
t &= t
self.assertEqual(t, self.s)
t -= t
self.assertEqual(t, self.thetype())
t = self.s.copy()
t ^= t
self.assertEqual(t, self.thetype())
def test_weakref(self):
s = self.thetype('gallahad')
p = weakref.proxy(s)
self.assertEqual(str(p), str(s))
s = None
support.gc_collect() # For PyPy or other GCs.
self.assertRaises(ReferenceError, str, p)
def test_rich_compare(self):
class TestRichSetCompare:
def __gt__(self, some_set):
self.gt_called = True
return False
def __lt__(self, some_set):
self.lt_called = True
return False
def __ge__(self, some_set):
self.ge_called = True
return False
def __le__(self, some_set):
self.le_called = True
return False
# This first tries the builtin rich set comparison, which doesn't know
# how to handle the custom object. Upon returning NotImplemented, the
# corresponding comparison on the right object is invoked.
myset = {1, 2, 3}
myobj = TestRichSetCompare()
myset < myobj
self.assertTrue(myobj.gt_called)
myobj = TestRichSetCompare()
myset > myobj
self.assertTrue(myobj.lt_called)
myobj = TestRichSetCompare()
myset <= myobj
self.assertTrue(myobj.ge_called)
myobj = TestRichSetCompare()
myset >= myobj
self.assertTrue(myobj.le_called)
@unittest.skipUnless(hasattr(set, "test_c_api"),
'C API test only available in a debug build')
def test_c_api(self):
self.assertEqual(set().test_c_api(), True)
class SetSubclass(set):
pass
class TestSetSubclass(TestSet):
thetype = SetSubclass
basetype = set
def test_keywords_in_subclass(self):
class subclass(set):
pass
u = subclass([1, 2])
self.assertIs(type(u), subclass)
self.assertEqual(set(u), {1, 2})
with self.assertRaises(TypeError):
subclass(sequence=())
class subclass_with_init(set):
def __init__(self, arg, newarg=None):
super().__init__(arg)
self.newarg = newarg
u = subclass_with_init([1, 2], newarg=3)
self.assertIs(type(u), subclass_with_init)
self.assertEqual(set(u), {1, 2})
self.assertEqual(u.newarg, 3)
class subclass_with_new(set):
def __new__(cls, arg, newarg=None):
self = super().__new__(cls, arg)
self.newarg = newarg
return self
u = subclass_with_new([1, 2], newarg=3)
self.assertIs(type(u), subclass_with_new)
self.assertEqual(set(u), {1, 2})
self.assertEqual(u.newarg, 3)
class TestFrozenSet(TestJointOps, unittest.TestCase):
thetype = frozenset
basetype = frozenset
def test_init(self):
s = self.thetype(self.word)
s.__init__(self.otherword)
self.assertEqual(s, set(self.word))
def test_constructor_identity(self):
s = self.thetype(range(3))
t = self.thetype(s)
self.assertEqual(id(s), id(t))
def test_hash(self):
self.assertEqual(hash(self.thetype('abcdeb')),
hash(self.thetype('ebecda')))
# make sure that all permutations give the same hash value
n = 100
seq = [randrange(n) for i in range(n)]
results = set()
for i in range(200):
shuffle(seq)
results.add(hash(self.thetype(seq)))
self.assertEqual(len(results), 1)
def test_copy(self):
dup = self.s.copy()
self.assertEqual(id(self.s), id(dup))
def test_frozen_as_dictkey(self):
seq = list(range(10)) + list('abcdefg') + ['apple']
key1 = self.thetype(seq)
key2 = self.thetype(reversed(seq))
self.assertEqual(key1, key2)
self.assertNotEqual(id(key1), id(key2))
d = {}
d[key1] = 42
self.assertEqual(d[key2], 42)
def test_hash_caching(self):
f = self.thetype('abcdcda')
self.assertEqual(hash(f), hash(f))
def test_hash_effectiveness(self):
n = 13
hashvalues = set()
addhashvalue = hashvalues.add
elemmasks = [(i+1, 1<<i) for i in range(n)]
for i in range(2**n):
addhashvalue(hash(frozenset([e for e, m in elemmasks if m&i])))
self.assertEqual(len(hashvalues), 2**n)
def zf_range(n):
# https://en.wikipedia.org/wiki/Set-theoretic_definition_of_natural_numbers
nums = [frozenset()]
for i in range(n-1):
num = frozenset(nums)
nums.append(num)
return nums[:n]
def powerset(s):
for i in range(len(s)+1):
yield from map(frozenset, itertools.combinations(s, i))
for n in range(18):
t = 2 ** n
mask = t - 1
for nums in (range, zf_range):
u = len({h & mask for h in map(hash, powerset(nums(n)))})
self.assertGreater(4*u, t)
class FrozenSetSubclass(frozenset):
pass
class TestFrozenSetSubclass(TestFrozenSet):
thetype = FrozenSetSubclass
basetype = frozenset
def test_keywords_in_subclass(self):
class subclass(frozenset):
pass
u = subclass([1, 2])
self.assertIs(type(u), subclass)
self.assertEqual(set(u), {1, 2})
with self.assertRaises(TypeError):
subclass(sequence=())
class subclass_with_init(frozenset):
def __init__(self, arg, newarg=None):
self.newarg = newarg
u = subclass_with_init([1, 2], newarg=3)
self.assertIs(type(u), subclass_with_init)
self.assertEqual(set(u), {1, 2})
self.assertEqual(u.newarg, 3)
class subclass_with_new(frozenset):
def __new__(cls, arg, newarg=None):
self = super().__new__(cls, arg)
self.newarg = newarg
return self
u = subclass_with_new([1, 2], newarg=3)
self.assertIs(type(u), subclass_with_new)
self.assertEqual(set(u), {1, 2})
self.assertEqual(u.newarg, 3)
def test_constructor_identity(self):
s = self.thetype(range(3))
t = self.thetype(s)
self.assertNotEqual(id(s), id(t))
def test_copy(self):
dup = self.s.copy()
self.assertNotEqual(id(self.s), id(dup))
def test_nested_empty_constructor(self):
s = self.thetype()
t = self.thetype(s)
self.assertEqual(s, t)
def test_singleton_empty_frozenset(self):
Frozenset = self.thetype
f = frozenset()
F = Frozenset()
efs = [Frozenset(), Frozenset([]), Frozenset(()), Frozenset(''),
Frozenset(), Frozenset([]), Frozenset(()), Frozenset(''),
Frozenset(range(0)), Frozenset(Frozenset()),
Frozenset(frozenset()), f, F, Frozenset(f), Frozenset(F)]
# All empty frozenset subclass instances should have different ids
self.assertEqual(len(set(map(id, efs))), len(efs))
# Tests taken from test_sets.py =============================================
empty_set = set()
#==============================================================================
class TestBasicOps:
def test_repr(self):
if self.repr is not None:
self.assertEqual(repr(self.set), self.repr)
def check_repr_against_values(self):
text = repr(self.set)
self.assertTrue(text.startswith('{'))
self.assertTrue(text.endswith('}'))
result = text[1:-1].split(', ')
result.sort()
sorted_repr_values = [repr(value) for value in self.values]
sorted_repr_values.sort()
self.assertEqual(result, sorted_repr_values)
def test_length(self):
self.assertEqual(len(self.set), self.length)
def test_self_equality(self):
self.assertEqual(self.set, self.set)
def test_equivalent_equality(self):
self.assertEqual(self.set, self.dup)
def test_copy(self):
self.assertEqual(self.set.copy(), self.dup)
def test_self_union(self):
result = self.set | self.set
self.assertEqual(result, self.dup)
def test_empty_union(self):
result = self.set | empty_set
self.assertEqual(result, self.dup)
def test_union_empty(self):
result = empty_set | self.set
self.assertEqual(result, self.dup)
def test_self_intersection(self):
result = self.set & self.set
self.assertEqual(result, self.dup)
def test_empty_intersection(self):
result = self.set & empty_set
self.assertEqual(result, empty_set)
def test_intersection_empty(self):
result = empty_set & self.set
self.assertEqual(result, empty_set)
def test_self_isdisjoint(self):
result = self.set.isdisjoint(self.set)
self.assertEqual(result, not self.set)
def test_empty_isdisjoint(self):
result = self.set.isdisjoint(empty_set)
self.assertEqual(result, True)
def test_isdisjoint_empty(self):
result = empty_set.isdisjoint(self.set)
self.assertEqual(result, True)
def test_self_symmetric_difference(self):
result = self.set ^ self.set
self.assertEqual(result, empty_set)
def test_empty_symmetric_difference(self):
result = self.set ^ empty_set
self.assertEqual(result, self.set)
def test_self_difference(self):
result = self.set - self.set
self.assertEqual(result, empty_set)
def test_empty_difference(self):
result = self.set - empty_set
self.assertEqual(result, self.dup)
def test_empty_difference_rev(self):
result = empty_set - self.set
self.assertEqual(result, empty_set)
def test_iteration(self):
for v in self.set:
self.assertIn(v, self.values)
setiter = iter(self.set)
self.assertEqual(setiter.__length_hint__(), len(self.set))
def test_pickling(self):
for proto in range(pickle.HIGHEST_PROTOCOL + 1):
p = pickle.dumps(self.set, proto)
copy = pickle.loads(p)
self.assertEqual(self.set, copy,
"%s != %s" % (self.set, copy))
def test_issue_37219(self):
with self.assertRaises(TypeError):
set().difference(123)
with self.assertRaises(TypeError):
set().difference_update(123)
#------------------------------------------------------------------------------
class TestBasicOpsEmpty(TestBasicOps, unittest.TestCase):
def setUp(self):
self.case = "empty set"
self.values = []
self.set = set(self.values)
self.dup = set(self.values)
self.length = 0
self.repr = "set()"
#------------------------------------------------------------------------------
class TestBasicOpsSingleton(TestBasicOps, unittest.TestCase):
def setUp(self):
self.case = "unit set (number)"
self.values = [3]
self.set = set(self.values)
self.dup = set(self.values)
self.length = 1
self.repr = "{3}"
def test_in(self):
self.assertIn(3, self.set)
def test_not_in(self):
self.assertNotIn(2, self.set)
#------------------------------------------------------------------------------
class TestBasicOpsTuple(TestBasicOps, unittest.TestCase):
def setUp(self):
self.case = "unit set (tuple)"
self.values = [(0, "zero")]
self.set = set(self.values)
self.dup = set(self.values)
self.length = 1
self.repr = "{(0, 'zero')}"
def test_in(self):
self.assertIn((0, "zero"), self.set)
def test_not_in(self):
self.assertNotIn(9, self.set)
#------------------------------------------------------------------------------
class TestBasicOpsTriple(TestBasicOps, unittest.TestCase):
def setUp(self):
self.case = "triple set"
self.values = [0, "zero", operator.add]
self.set = set(self.values)
self.dup = set(self.values)
self.length = 3
self.repr = None
#------------------------------------------------------------------------------
class TestBasicOpsString(TestBasicOps, unittest.TestCase):
def setUp(self):
self.case = "string set"
self.values = ["a", "b", "c"]
self.set = set(self.values)
self.dup = set(self.values)
self.length = 3
def test_repr(self):
self.check_repr_against_values()
#------------------------------------------------------------------------------
class TestBasicOpsBytes(TestBasicOps, unittest.TestCase):
def setUp(self):
self.case = "bytes set"
self.values = [b"a", b"b", b"c"]
self.set = set(self.values)
self.dup = set(self.values)
self.length = 3
def test_repr(self):
self.check_repr_against_values()
#------------------------------------------------------------------------------
class TestBasicOpsMixedStringBytes(TestBasicOps, unittest.TestCase):
def setUp(self):
self._warning_filters = warnings_helper.check_warnings()
self._warning_filters.__enter__()
warnings.simplefilter('ignore', BytesWarning)
self.case = "string and bytes set"
self.values = ["a", "b", b"a", b"b"]
self.set = set(self.values)
self.dup = set(self.values)
self.length = 4
def tearDown(self):
self._warning_filters.__exit__(None, None, None)
def test_repr(self):
self.check_repr_against_values()
#==============================================================================
def baditer():
raise TypeError
yield True
def gooditer():
yield True
class TestExceptionPropagation(unittest.TestCase):
"""SF 628246: Set constructor should not trap iterator TypeErrors"""
def test_instanceWithException(self):
self.assertRaises(TypeError, set, baditer())
def test_instancesWithoutException(self):
# All of these iterables should load without exception.
set([1,2,3])
set((1,2,3))
set({'one':1, 'two':2, 'three':3})
set(range(3))
set('abc')
set(gooditer())
def test_changingSizeWhileIterating(self):
s = set([1,2,3])
try:
for i in s:
s.update([4])
except RuntimeError:
pass
else:
self.fail("no exception when changing size during iteration")
#==============================================================================
class TestSetOfSets(unittest.TestCase):
def test_constructor(self):
inner = frozenset([1])
outer = set([inner])
element = outer.pop()
self.assertEqual(type(element), frozenset)
outer.add(inner) # Rebuild set of sets with .add method
outer.remove(inner)
self.assertEqual(outer, set()) # Verify that remove worked
outer.discard(inner) # Absence of KeyError indicates working fine
#==============================================================================
class TestBinaryOps(unittest.TestCase):
def setUp(self):
self.set = set((2, 4, 6))
def test_eq(self): # SF bug 643115
self.assertEqual(self.set, set({2:1,4:3,6:5}))
def test_union_subset(self):
result = self.set | set([2])
self.assertEqual(result, set((2, 4, 6)))
def test_union_superset(self):
result = self.set | set([2, 4, 6, 8])
self.assertEqual(result, set([2, 4, 6, 8]))
def test_union_overlap(self):
result = self.set | set([3, 4, 5])
self.assertEqual(result, set([2, 3, 4, 5, 6]))
def test_union_non_overlap(self):
result = self.set | set([8])
self.assertEqual(result, set([2, 4, 6, 8]))
def test_intersection_subset(self):
result = self.set & set((2, 4))
self.assertEqual(result, set((2, 4)))
def test_intersection_superset(self):
result = self.set & set([2, 4, 6, 8])
self.assertEqual(result, set([2, 4, 6]))
def test_intersection_overlap(self):
result = self.set & set([3, 4, 5])
self.assertEqual(result, set([4]))
def test_intersection_non_overlap(self):
result = self.set & set([8])
self.assertEqual(result, empty_set)
def test_isdisjoint_subset(self):
result = self.set.isdisjoint(set((2, 4)))
self.assertEqual(result, False)
def test_isdisjoint_superset(self):
result = self.set.isdisjoint(set([2, 4, 6, 8]))
self.assertEqual(result, False)
def test_isdisjoint_overlap(self):
result = self.set.isdisjoint(set([3, 4, 5]))
self.assertEqual(result, False)
def test_isdisjoint_non_overlap(self):
result = self.set.isdisjoint(set([8]))
self.assertEqual(result, True)
def test_sym_difference_subset(self):
result = self.set ^ set((2, 4))
self.assertEqual(result, set([6]))
def test_sym_difference_superset(self):
result = self.set ^ set((2, 4, 6, 8))
self.assertEqual(result, set([8]))
def test_sym_difference_overlap(self):
result = self.set ^ set((3, 4, 5))
self.assertEqual(result, set([2, 3, 5, 6]))
def test_sym_difference_non_overlap(self):
result = self.set ^ set([8])
self.assertEqual(result, set([2, 4, 6, 8]))
#==============================================================================
class TestUpdateOps(unittest.TestCase):
def setUp(self):
self.set = set((2, 4, 6))
def test_union_subset(self):
self.set |= set([2])
self.assertEqual(self.set, set((2, 4, 6)))
def test_union_superset(self):
self.set |= set([2, 4, 6, 8])
self.assertEqual(self.set, set([2, 4, 6, 8]))
def test_union_overlap(self):
self.set |= set([3, 4, 5])
self.assertEqual(self.set, set([2, 3, 4, 5, 6]))
def test_union_non_overlap(self):
self.set |= set([8])
self.assertEqual(self.set, set([2, 4, 6, 8]))
def test_union_method_call(self):
self.set.update(set([3, 4, 5]))
self.assertEqual(self.set, set([2, 3, 4, 5, 6]))
def test_intersection_subset(self):
self.set &= set((2, 4))
self.assertEqual(self.set, set((2, 4)))
def test_intersection_superset(self):
self.set &= set([2, 4, 6, 8])
self.assertEqual(self.set, set([2, 4, 6]))
def test_intersection_overlap(self):
self.set &= set([3, 4, 5])
self.assertEqual(self.set, set([4]))
def test_intersection_non_overlap(self):
self.set &= set([8])
self.assertEqual(self.set, empty_set)
def test_intersection_method_call(self):
self.set.intersection_update(set([3, 4, 5]))
self.assertEqual(self.set, set([4]))
def test_sym_difference_subset(self):
self.set ^= set((2, 4))
self.assertEqual(self.set, set([6]))
def test_sym_difference_superset(self):
self.set ^= set((2, 4, 6, 8))
self.assertEqual(self.set, set([8]))
def test_sym_difference_overlap(self):
self.set ^= set((3, 4, 5))
self.assertEqual(self.set, set([2, 3, 5, 6]))
def test_sym_difference_non_overlap(self):
self.set ^= set([8])
self.assertEqual(self.set, set([2, 4, 6, 8]))
def test_sym_difference_method_call(self):
self.set.symmetric_difference_update(set([3, 4, 5]))
self.assertEqual(self.set, set([2, 3, 5, 6]))
def test_difference_subset(self):
self.set -= set((2, 4))
self.assertEqual(self.set, set([6]))
def test_difference_superset(self):
self.set -= set((2, 4, 6, 8))
self.assertEqual(self.set, set([]))
def test_difference_overlap(self):
self.set -= set((3, 4, 5))
self.assertEqual(self.set, set([2, 6]))
def test_difference_non_overlap(self):
self.set -= set([8])
self.assertEqual(self.set, set([2, 4, 6]))
def test_difference_method_call(self):
self.set.difference_update(set([3, 4, 5]))
self.assertEqual(self.set, set([2, 6]))
#==============================================================================
class TestMutate(unittest.TestCase):
def setUp(self):
self.values = ["a", "b", "c"]
self.set = set(self.values)
def test_add_present(self):
self.set.add("c")
self.assertEqual(self.set, set("abc"))
def test_add_absent(self):
self.set.add("d")
self.assertEqual(self.set, set("abcd"))
def test_add_until_full(self):
tmp = set()
expected_len = 0
for v in self.values:
tmp.add(v)
expected_len += 1
self.assertEqual(len(tmp), expected_len)
self.assertEqual(tmp, self.set)
def test_remove_present(self):
self.set.remove("b")
self.assertEqual(self.set, set("ac"))
def test_remove_absent(self):
try:
self.set.remove("d")
self.fail("Removing missing element should have raised LookupError")
except LookupError:
pass
def test_remove_until_empty(self):
expected_len = len(self.set)
for v in self.values:
self.set.remove(v)
expected_len -= 1
self.assertEqual(len(self.set), expected_len)
def test_discard_present(self):
self.set.discard("c")
self.assertEqual(self.set, set("ab"))
def test_discard_absent(self):
self.set.discard("d")
self.assertEqual(self.set, set("abc"))
def test_clear(self):
self.set.clear()
self.assertEqual(len(self.set), 0)
def test_pop(self):
popped = {}
while self.set:
popped[self.set.pop()] = None
self.assertEqual(len(popped), len(self.values))
for v in self.values:
self.assertIn(v, popped)
def test_update_empty_tuple(self):
self.set.update(())
self.assertEqual(self.set, set(self.values))
def test_update_unit_tuple_overlap(self):
self.set.update(("a",))
self.assertEqual(self.set, set(self.values))
def test_update_unit_tuple_non_overlap(self):
self.set.update(("a", "z"))
self.assertEqual(self.set, set(self.values + ["z"]))
#==============================================================================
class TestSubsets:
case2method = {"<=": "issubset",
">=": "issuperset",
}
reverse = {"==": "==",
"!=": "!=",
"<": ">",
">": "<",
"<=": ">=",
">=": "<=",
}
def test_issubset(self):
x = self.left
y = self.right
for case in "!=", "==", "<", "<=", ">", ">=":
expected = case in self.cases
# Test the binary infix spelling.
result = eval("x" + case + "y", locals())
self.assertEqual(result, expected)
# Test the "friendly" method-name spelling, if one exists.
if case in TestSubsets.case2method:
method = getattr(x, TestSubsets.case2method[case])
result = method(y)
self.assertEqual(result, expected)
# Now do the same for the operands reversed.
rcase = TestSubsets.reverse[case]
result = eval("y" + rcase + "x", locals())
self.assertEqual(result, expected)
if rcase in TestSubsets.case2method:
method = getattr(y, TestSubsets.case2method[rcase])
result = method(x)
self.assertEqual(result, expected)
#------------------------------------------------------------------------------
class TestSubsetEqualEmpty(TestSubsets, unittest.TestCase):
left = set()
right = set()
name = "both empty"
cases = "==", "<=", ">="
#------------------------------------------------------------------------------
class TestSubsetEqualNonEmpty(TestSubsets, unittest.TestCase):
left = set([1, 2])
right = set([1, 2])
name = "equal pair"
cases = "==", "<=", ">="
#------------------------------------------------------------------------------
class TestSubsetEmptyNonEmpty(TestSubsets, unittest.TestCase):
left = set()
right = set([1, 2])
name = "one empty, one non-empty"
cases = "!=", "<", "<="
#------------------------------------------------------------------------------
class TestSubsetPartial(TestSubsets, unittest.TestCase):
left = set([1])
right = set([1, 2])
name = "one a non-empty proper subset of other"
cases = "!=", "<", "<="
#------------------------------------------------------------------------------
class TestSubsetNonOverlap(TestSubsets, unittest.TestCase):
left = set([1])
right = set([2])
name = "neither empty, neither contains"
cases = "!="
#==============================================================================
class TestOnlySetsInBinaryOps:
def test_eq_ne(self):
# Unlike the others, this is testing that == and != *are* allowed.
self.assertEqual(self.other == self.set, False)
self.assertEqual(self.set == self.other, False)
self.assertEqual(self.other != self.set, True)
self.assertEqual(self.set != self.other, True)
def test_ge_gt_le_lt(self):
self.assertRaises(TypeError, lambda: self.set < self.other)
self.assertRaises(TypeError, lambda: self.set <= self.other)
self.assertRaises(TypeError, lambda: self.set > self.other)
self.assertRaises(TypeError, lambda: self.set >= self.other)
self.assertRaises(TypeError, lambda: self.other < self.set)
self.assertRaises(TypeError, lambda: self.other <= self.set)
self.assertRaises(TypeError, lambda: self.other > self.set)
self.assertRaises(TypeError, lambda: self.other >= self.set)
def test_update_operator(self):
try:
self.set |= self.other
except TypeError:
pass
else:
self.fail("expected TypeError")
def test_update(self):
if self.otherIsIterable:
self.set.update(self.other)
else:
self.assertRaises(TypeError, self.set.update, self.other)
def test_union(self):
self.assertRaises(TypeError, lambda: self.set | self.other)
self.assertRaises(TypeError, lambda: self.other | self.set)
if self.otherIsIterable:
self.set.union(self.other)
else:
self.assertRaises(TypeError, self.set.union, self.other)
def test_intersection_update_operator(self):
try:
self.set &= self.other
except TypeError:
pass
else:
self.fail("expected TypeError")
def test_intersection_update(self):
if self.otherIsIterable:
self.set.intersection_update(self.other)
else:
self.assertRaises(TypeError,
self.set.intersection_update,
self.other)
def test_intersection(self):
self.assertRaises(TypeError, lambda: self.set & self.other)
self.assertRaises(TypeError, lambda: self.other & self.set)
if self.otherIsIterable:
self.set.intersection(self.other)
else:
self.assertRaises(TypeError, self.set.intersection, self.other)
def test_sym_difference_update_operator(self):
try:
self.set ^= self.other
except TypeError:
pass
else:
self.fail("expected TypeError")
def test_sym_difference_update(self):
if self.otherIsIterable:
self.set.symmetric_difference_update(self.other)
else:
self.assertRaises(TypeError,
self.set.symmetric_difference_update,
self.other)
def test_sym_difference(self):
self.assertRaises(TypeError, lambda: self.set ^ self.other)
self.assertRaises(TypeError, lambda: self.other ^ self.set)
if self.otherIsIterable:
self.set.symmetric_difference(self.other)
else:
self.assertRaises(TypeError, self.set.symmetric_difference, self.other)
def test_difference_update_operator(self):
try:
self.set -= self.other
except TypeError:
pass
else:
self.fail("expected TypeError")
def test_difference_update(self):
if self.otherIsIterable:
self.set.difference_update(self.other)
else:
self.assertRaises(TypeError,
self.set.difference_update,
self.other)
def test_difference(self):
self.assertRaises(TypeError, lambda: self.set - self.other)
self.assertRaises(TypeError, lambda: self.other - self.set)
if self.otherIsIterable:
self.set.difference(self.other)
else:
self.assertRaises(TypeError, self.set.difference, self.other)
#------------------------------------------------------------------------------
class TestOnlySetsNumeric(TestOnlySetsInBinaryOps, unittest.TestCase):
def setUp(self):
self.set = set((1, 2, 3))
self.other = 19
self.otherIsIterable = False
#------------------------------------------------------------------------------
class TestOnlySetsDict(TestOnlySetsInBinaryOps, unittest.TestCase):
def setUp(self):
self.set = set((1, 2, 3))
self.other = {1:2, 3:4}
self.otherIsIterable = True
#------------------------------------------------------------------------------
class TestOnlySetsOperator(TestOnlySetsInBinaryOps, unittest.TestCase):
def setUp(self):
self.set = set((1, 2, 3))
self.other = operator.add
self.otherIsIterable = False
#------------------------------------------------------------------------------
class TestOnlySetsTuple(TestOnlySetsInBinaryOps, unittest.TestCase):
def setUp(self):
self.set = set((1, 2, 3))
self.other = (2, 4, 6)
self.otherIsIterable = True
#------------------------------------------------------------------------------
class TestOnlySetsString(TestOnlySetsInBinaryOps, unittest.TestCase):
def setUp(self):
self.set = set((1, 2, 3))
self.other = 'abc'
self.otherIsIterable = True
#------------------------------------------------------------------------------
class TestOnlySetsGenerator(TestOnlySetsInBinaryOps, unittest.TestCase):
def setUp(self):
def gen():
for i in range(0, 10, 2):
yield i
self.set = set((1, 2, 3))
self.other = gen()
self.otherIsIterable = True
#==============================================================================
class TestCopying:
def test_copy(self):
dup = self.set.copy()
dup_list = sorted(dup, key=repr)
set_list = sorted(self.set, key=repr)
self.assertEqual(len(dup_list), len(set_list))
for i in range(len(dup_list)):
self.assertTrue(dup_list[i] is set_list[i])
def test_deep_copy(self):
dup = copy.deepcopy(self.set)
##print type(dup), repr(dup)
dup_list = sorted(dup, key=repr)
set_list = sorted(self.set, key=repr)
self.assertEqual(len(dup_list), len(set_list))
for i in range(len(dup_list)):
self.assertEqual(dup_list[i], set_list[i])
#------------------------------------------------------------------------------
class TestCopyingEmpty(TestCopying, unittest.TestCase):
def setUp(self):
self.set = set()
#------------------------------------------------------------------------------
class TestCopyingSingleton(TestCopying, unittest.TestCase):
def setUp(self):
self.set = set(["hello"])
#------------------------------------------------------------------------------
class TestCopyingTriple(TestCopying, unittest.TestCase):
def setUp(self):
self.set = set(["zero", 0, None])
#------------------------------------------------------------------------------
class TestCopyingTuple(TestCopying, unittest.TestCase):
def setUp(self):
self.set = set([(1, 2)])
#------------------------------------------------------------------------------
class TestCopyingNested(TestCopying, unittest.TestCase):
def setUp(self):
self.set = set([((1, 2), (3, 4))])
#==============================================================================
class TestIdentities(unittest.TestCase):
def setUp(self):
self.a = set('abracadabra')
self.b = set('alacazam')
def test_binopsVsSubsets(self):
a, b = self.a, self.b
self.assertTrue(a - b < a)
self.assertTrue(b - a < b)
self.assertTrue(a & b < a)
self.assertTrue(a & b < b)
self.assertTrue(a | b > a)
self.assertTrue(a | b > b)
self.assertTrue(a ^ b < a | b)
def test_commutativity(self):
a, b = self.a, self.b
self.assertEqual(a&b, b&a)
self.assertEqual(a|b, b|a)
self.assertEqual(a^b, b^a)
if a != b:
self.assertNotEqual(a-b, b-a)
def test_summations(self):
# check that sums of parts equal the whole
a, b = self.a, self.b
self.assertEqual((a-b)|(a&b)|(b-a), a|b)
self.assertEqual((a&b)|(a^b), a|b)
self.assertEqual(a|(b-a), a|b)
self.assertEqual((a-b)|b, a|b)
self.assertEqual((a-b)|(a&b), a)
self.assertEqual((b-a)|(a&b), b)
self.assertEqual((a-b)|(b-a), a^b)
def test_exclusion(self):
# check that inverse operations show non-overlap
a, b, zero = self.a, self.b, set()
self.assertEqual((a-b)&b, zero)
self.assertEqual((b-a)&a, zero)
self.assertEqual((a&b)&(a^b), zero)
# Tests derived from test_itertools.py =======================================
def R(seqn):
'Regular generator'
for i in seqn:
yield i
class G:
'Sequence using __getitem__'
def __init__(self, seqn):
self.seqn = seqn
def __getitem__(self, i):
return self.seqn[i]
class I:
'Sequence using iterator protocol'
def __init__(self, seqn):
self.seqn = seqn
self.i = 0
def __iter__(self):
return self
def __next__(self):
if self.i >= len(self.seqn): raise StopIteration
v = self.seqn[self.i]
self.i += 1
return v
class Ig:
'Sequence using iterator protocol defined with a generator'
def __init__(self, seqn):
self.seqn = seqn
self.i = 0
def __iter__(self):
for val in self.seqn:
yield val
class X:
'Missing __getitem__ and __iter__'
def __init__(self, seqn):
self.seqn = seqn
self.i = 0
def __next__(self):
if self.i >= len(self.seqn): raise StopIteration
v = self.seqn[self.i]
self.i += 1
return v
class N:
'Iterator missing __next__()'
def __init__(self, seqn):
self.seqn = seqn
self.i = 0
def __iter__(self):
return self
class E:
'Test propagation of exceptions'
def __init__(self, seqn):
self.seqn = seqn
self.i = 0
def __iter__(self):
return self
def __next__(self):
3 // 0
class S:
'Test immediate stop'
def __init__(self, seqn):
pass
def __iter__(self):
return self
def __next__(self):
raise StopIteration
from itertools import chain
def L(seqn):
'Test multiple tiers of iterators'
return chain(map(lambda x:x, R(Ig(G(seqn)))))
class TestVariousIteratorArgs(unittest.TestCase):
def test_constructor(self):
for cons in (set, frozenset):
for s in ("123", "", range(1000), ('do', 1.2), range(2000,2200,5)):
for g in (G, I, Ig, S, L, R):
self.assertEqual(sorted(cons(g(s)), key=repr), sorted(g(s), key=repr))
self.assertRaises(TypeError, cons , X(s))
self.assertRaises(TypeError, cons , N(s))
self.assertRaises(ZeroDivisionError, cons , E(s))
def test_inline_methods(self):
s = set('november')
for data in ("123", "", range(1000), ('do', 1.2), range(2000,2200,5), 'december'):
for meth in (s.union, s.intersection, s.difference, s.symmetric_difference, s.isdisjoint):
for g in (G, I, Ig, L, R):
expected = meth(data)
actual = meth(g(data))
if isinstance(expected, bool):
self.assertEqual(actual, expected)
else:
self.assertEqual(sorted(actual, key=repr), sorted(expected, key=repr))
self.assertRaises(TypeError, meth, X(s))
self.assertRaises(TypeError, meth, N(s))
self.assertRaises(ZeroDivisionError, meth, E(s))
def test_inplace_methods(self):
for data in ("123", "", range(1000), ('do', 1.2), range(2000,2200,5), 'december'):
for methname in ('update', 'intersection_update',
'difference_update', 'symmetric_difference_update'):
for g in (G, I, Ig, S, L, R):
s = set('january')
t = s.copy()
getattr(s, methname)(list(g(data)))
getattr(t, methname)(g(data))
self.assertEqual(sorted(s, key=repr), sorted(t, key=repr))
self.assertRaises(TypeError, getattr(set('january'), methname), X(data))
self.assertRaises(TypeError, getattr(set('january'), methname), N(data))
self.assertRaises(ZeroDivisionError, getattr(set('january'), methname), E(data))
class bad_eq:
def __eq__(self, other):
if be_bad:
set2.clear()
raise ZeroDivisionError
return self is other
def __hash__(self):
return 0
class bad_dict_clear:
def __eq__(self, other):
if be_bad:
dict2.clear()
return self is other
def __hash__(self):
return 0
class TestWeirdBugs(unittest.TestCase):
def test_8420_set_merge(self):
# This used to segfault
global be_bad, set2, dict2
be_bad = False
set1 = {bad_eq()}
set2 = {bad_eq() for i in range(75)}
be_bad = True
self.assertRaises(ZeroDivisionError, set1.update, set2)
be_bad = False
set1 = {bad_dict_clear()}
dict2 = {bad_dict_clear(): None}
be_bad = True
set1.symmetric_difference_update(dict2)
def test_iter_and_mutate(self):
# Issue #24581
s = set(range(100))
s.clear()
s.update(range(100))
si = iter(s)
s.clear()
a = list(range(100))
s.update(range(100))
list(si)
def test_merge_and_mutate(self):
class X:
def __hash__(self):
return hash(0)
def __eq__(self, o):
other.clear()
return False
other = set()
other = {X() for i in range(10)}
s = {0}
s.update(other)
# Application tests (based on David Eppstein's graph recipes ====================================
def powerset(U):
"""Generates all subsets of a set or sequence U."""
U = iter(U)
try:
x = frozenset([next(U)])
for S in powerset(U):
yield S
yield S | x
except StopIteration:
yield frozenset()
def cube(n):
"""Graph of n-dimensional hypercube."""
singletons = [frozenset([x]) for x in range(n)]
return dict([(x, frozenset([x^s for s in singletons]))
for x in powerset(range(n))])
def linegraph(G):
"""Graph, the vertices of which are edges of G,
with two vertices being adjacent iff the corresponding
edges share a vertex."""
L = {}
for x in G:
for y in G[x]:
nx = [frozenset([x,z]) for z in G[x] if z != y]
ny = [frozenset([y,z]) for z in G[y] if z != x]
L[frozenset([x,y])] = frozenset(nx+ny)
return L
def faces(G):
'Return a set of faces in G. Where a face is a set of vertices on that face'
# currently limited to triangles,squares, and pentagons
f = set()
for v1, edges in G.items():
for v2 in edges:
for v3 in G[v2]:
if v1 == v3:
continue
if v1 in G[v3]:
f.add(frozenset([v1, v2, v3]))
else:
for v4 in G[v3]:
if v4 == v2:
continue
if v1 in G[v4]:
f.add(frozenset([v1, v2, v3, v4]))
else:
for v5 in G[v4]:
if v5 == v3 or v5 == v2:
continue
if v1 in G[v5]:
f.add(frozenset([v1, v2, v3, v4, v5]))
return f
class TestGraphs(unittest.TestCase):
def test_cube(self):
g = cube(3) # vert --> {v1, v2, v3}
vertices1 = set(g)
self.assertEqual(len(vertices1), 8) # eight vertices
for edge in g.values():
self.assertEqual(len(edge), 3) # each vertex connects to three edges
vertices2 = set(v for edges in g.values() for v in edges)
self.assertEqual(vertices1, vertices2) # edge vertices in original set
cubefaces = faces(g)
self.assertEqual(len(cubefaces), 6) # six faces
for face in cubefaces:
self.assertEqual(len(face), 4) # each face is a square
def test_cuboctahedron(self):
# http://en.wikipedia.org/wiki/Cuboctahedron
# 8 triangular faces and 6 square faces
# 12 identical vertices each connecting a triangle and square
g = cube(3)
cuboctahedron = linegraph(g) # V( --> {V1, V2, V3, V4}
self.assertEqual(len(cuboctahedron), 12)# twelve vertices
vertices = set(cuboctahedron)
for edges in cuboctahedron.values():
self.assertEqual(len(edges), 4) # each vertex connects to four other vertices
othervertices = set(edge for edges in cuboctahedron.values() for edge in edges)
self.assertEqual(vertices, othervertices) # edge vertices in original set
cubofaces = faces(cuboctahedron)
facesizes = collections.defaultdict(int)
for face in cubofaces:
facesizes[len(face)] += 1
self.assertEqual(facesizes[3], 8) # eight triangular faces
self.assertEqual(facesizes[4], 6) # six square faces
for vertex in cuboctahedron:
edge = vertex # Cuboctahedron vertices are edges in Cube
self.assertEqual(len(edge), 2) # Two cube vertices define an edge
for cubevert in edge:
self.assertIn(cubevert, g)
#==============================================================================
if __name__ == "__main__":
unittest.main()