import unittest from test import support from test.support import warnings_helper import gc import weakref import operator import copy import pickle from random import randrange, shuffle import warnings import collections import collections.abc import itertools class PassThru(Exception): pass def check_pass_thru(): raise PassThru yield 1 class BadCmp: def __hash__(self): return 1 def __eq__(self, other): raise RuntimeError class ReprWrapper: 'Used to test self-referential repr() calls' def __repr__(self): return repr(self.value) class HashCountingInt(int): 'int-like object that counts the number of times __hash__ is called' def __init__(self, *args): self.hash_count = 0 def __hash__(self): self.hash_count += 1 return int.__hash__(self) class TestJointOps: # Tests common to both set and frozenset def setUp(self): self.word = word = 'simsalabim' self.otherword = 'madagascar' self.letters = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' self.s = self.thetype(word) self.d = dict.fromkeys(word) def test_new_or_init(self): self.assertRaises(TypeError, self.thetype, [], 2) self.assertRaises(TypeError, set().__init__, a=1) def test_uniquification(self): actual = sorted(self.s) expected = sorted(self.d) self.assertEqual(actual, expected) self.assertRaises(PassThru, self.thetype, check_pass_thru()) self.assertRaises(TypeError, self.thetype, [[]]) def test_len(self): self.assertEqual(len(self.s), len(self.d)) def test_contains(self): for c in self.letters: self.assertEqual(c in self.s, c in self.d) self.assertRaises(TypeError, self.s.__contains__, [[]]) s = self.thetype([frozenset(self.letters)]) self.assertIn(self.thetype(self.letters), s) def test_union(self): u = self.s.union(self.otherword) for c in self.letters: self.assertEqual(c in u, c in self.d or c in self.otherword) self.assertEqual(self.s, self.thetype(self.word)) self.assertEqual(type(u), self.basetype) self.assertRaises(PassThru, self.s.union, check_pass_thru()) self.assertRaises(TypeError, self.s.union, [[]]) for C in set, frozenset, dict.fromkeys, str, list, tuple: self.assertEqual(self.thetype('abcba').union(C('cdc')), set('abcd')) self.assertEqual(self.thetype('abcba').union(C('efgfe')), set('abcefg')) self.assertEqual(self.thetype('abcba').union(C('ccb')), set('abc')) self.assertEqual(self.thetype('abcba').union(C('ef')), set('abcef')) self.assertEqual(self.thetype('abcba').union(C('ef'), C('fg')), set('abcefg')) # Issue #6573 x = self.thetype() self.assertEqual(x.union(set([1]), x, set([2])), self.thetype([1, 2])) def test_or(self): i = self.s.union(self.otherword) self.assertEqual(self.s | set(self.otherword), i) self.assertEqual(self.s | frozenset(self.otherword), i) try: self.s | self.otherword except TypeError: pass else: self.fail("s|t did not screen-out general iterables") def test_intersection(self): i = self.s.intersection(self.otherword) for c in self.letters: self.assertEqual(c in i, c in self.d and c in self.otherword) self.assertEqual(self.s, self.thetype(self.word)) self.assertEqual(type(i), self.basetype) self.assertRaises(PassThru, self.s.intersection, check_pass_thru()) for C in set, frozenset, dict.fromkeys, str, list, tuple: self.assertEqual(self.thetype('abcba').intersection(C('cdc')), set('cc')) self.assertEqual(self.thetype('abcba').intersection(C('efgfe')), set('')) self.assertEqual(self.thetype('abcba').intersection(C('ccb')), set('bc')) self.assertEqual(self.thetype('abcba').intersection(C('ef')), set('')) self.assertEqual(self.thetype('abcba').intersection(C('cbcf'), C('bag')), set('b')) s = self.thetype('abcba') z = s.intersection() if self.thetype == frozenset(): self.assertEqual(id(s), id(z)) else: self.assertNotEqual(id(s), id(z)) def test_isdisjoint(self): def f(s1, s2): 'Pure python equivalent of isdisjoint()' return not set(s1).intersection(s2) for larg in '', 'a', 'ab', 'abc', 'ababac', 'cdc', 'cc', 'efgfe', 'ccb', 'ef': s1 = self.thetype(larg) for rarg in '', 'a', 'ab', 'abc', 'ababac', 'cdc', 'cc', 'efgfe', 'ccb', 'ef': for C in set, frozenset, dict.fromkeys, str, list, tuple: s2 = C(rarg) actual = s1.isdisjoint(s2) expected = f(s1, s2) self.assertEqual(actual, expected) self.assertTrue(actual is True or actual is False) def test_and(self): i = self.s.intersection(self.otherword) self.assertEqual(self.s & set(self.otherword), i) self.assertEqual(self.s & frozenset(self.otherword), i) try: self.s & self.otherword except TypeError: pass else: self.fail("s&t did not screen-out general iterables") def test_difference(self): i = self.s.difference(self.otherword) for c in self.letters: self.assertEqual(c in i, c in self.d and c not in self.otherword) self.assertEqual(self.s, self.thetype(self.word)) self.assertEqual(type(i), self.basetype) self.assertRaises(PassThru, self.s.difference, check_pass_thru()) self.assertRaises(TypeError, self.s.difference, [[]]) for C in set, frozenset, dict.fromkeys, str, list, tuple: self.assertEqual(self.thetype('abcba').difference(C('cdc')), set('ab')) self.assertEqual(self.thetype('abcba').difference(C('efgfe')), set('abc')) self.assertEqual(self.thetype('abcba').difference(C('ccb')), set('a')) self.assertEqual(self.thetype('abcba').difference(C('ef')), set('abc')) self.assertEqual(self.thetype('abcba').difference(), set('abc')) self.assertEqual(self.thetype('abcba').difference(C('a'), C('b')), set('c')) def test_sub(self): i = self.s.difference(self.otherword) self.assertEqual(self.s - set(self.otherword), i) self.assertEqual(self.s - frozenset(self.otherword), i) try: self.s - self.otherword except TypeError: pass else: self.fail("s-t did not screen-out general iterables") def test_symmetric_difference(self): i = self.s.symmetric_difference(self.otherword) for c in self.letters: self.assertEqual(c in i, (c in self.d) ^ (c in self.otherword)) self.assertEqual(self.s, self.thetype(self.word)) self.assertEqual(type(i), self.basetype) self.assertRaises(PassThru, self.s.symmetric_difference, check_pass_thru()) self.assertRaises(TypeError, self.s.symmetric_difference, [[]]) for C in set, frozenset, dict.fromkeys, str, list, tuple: self.assertEqual(self.thetype('abcba').symmetric_difference(C('cdc')), set('abd')) self.assertEqual(self.thetype('abcba').symmetric_difference(C('efgfe')), set('abcefg')) self.assertEqual(self.thetype('abcba').symmetric_difference(C('ccb')), set('a')) self.assertEqual(self.thetype('abcba').symmetric_difference(C('ef')), set('abcef')) def test_xor(self): i = self.s.symmetric_difference(self.otherword) self.assertEqual(self.s ^ set(self.otherword), i) self.assertEqual(self.s ^ frozenset(self.otherword), i) try: self.s ^ self.otherword except TypeError: pass else: self.fail("s^t did not screen-out general iterables") def test_equality(self): self.assertEqual(self.s, set(self.word)) self.assertEqual(self.s, frozenset(self.word)) self.assertEqual(self.s == self.word, False) self.assertNotEqual(self.s, set(self.otherword)) self.assertNotEqual(self.s, frozenset(self.otherword)) self.assertEqual(self.s != self.word, True) def test_setOfFrozensets(self): t = map(frozenset, ['abcdef', 'bcd', 'bdcb', 'fed', 'fedccba']) s = self.thetype(t) self.assertEqual(len(s), 3) def test_sub_and_super(self): p, q, r = map(self.thetype, ['ab', 'abcde', 'def']) self.assertTrue(p < q) self.assertTrue(p <= q) self.assertTrue(q <= q) self.assertTrue(q > p) self.assertTrue(q >= p) self.assertFalse(q < r) self.assertFalse(q <= r) self.assertFalse(q > r) self.assertFalse(q >= r) self.assertTrue(set('a').issubset('abc')) self.assertTrue(set('abc').issuperset('a')) self.assertFalse(set('a').issubset('cbs')) self.assertFalse(set('cbs').issuperset('a')) def test_pickling(self): for i in range(pickle.HIGHEST_PROTOCOL + 1): p = pickle.dumps(self.s, i) dup = pickle.loads(p) self.assertEqual(self.s, dup, "%s != %s" % (self.s, dup)) if type(self.s) not in (set, frozenset): self.s.x = 10 p = pickle.dumps(self.s, i) dup = pickle.loads(p) self.assertEqual(self.s.x, dup.x) def test_iterator_pickling(self): for proto in range(pickle.HIGHEST_PROTOCOL + 1): itorg = iter(self.s) data = self.thetype(self.s) d = pickle.dumps(itorg, proto) it = pickle.loads(d) # Set iterators unpickle as list iterators due to the # undefined order of set items. # self.assertEqual(type(itorg), type(it)) self.assertIsInstance(it, collections.abc.Iterator) self.assertEqual(self.thetype(it), data) it = pickle.loads(d) try: drop = next(it) except StopIteration: continue d = pickle.dumps(it, proto) it = pickle.loads(d) self.assertEqual(self.thetype(it), data - self.thetype((drop,))) def test_deepcopy(self): class Tracer: def __init__(self, value): self.value = value def __hash__(self): return self.value def __deepcopy__(self, memo=None): return Tracer(self.value + 1) t = Tracer(10) s = self.thetype([t]) dup = copy.deepcopy(s) self.assertNotEqual(id(s), id(dup)) for elem in dup: newt = elem self.assertNotEqual(id(t), id(newt)) self.assertEqual(t.value + 1, newt.value) def test_gc(self): # Create a nest of cycles to exercise overall ref count check class A: pass s = set(A() for i in range(1000)) for elem in s: elem.cycle = s elem.sub = elem elem.set = set([elem]) def test_subclass_with_custom_hash(self): # Bug #1257731 class H(self.thetype): def __hash__(self): return int(id(self) & 0x7fffffff) s=H() f=set() f.add(s) self.assertIn(s, f) f.remove(s) f.add(s) f.discard(s) def test_badcmp(self): s = self.thetype([BadCmp()]) # Detect comparison errors during insertion and lookup self.assertRaises(RuntimeError, self.thetype, [BadCmp(), BadCmp()]) self.assertRaises(RuntimeError, s.__contains__, BadCmp()) # Detect errors during mutating operations if hasattr(s, 'add'): self.assertRaises(RuntimeError, s.add, BadCmp()) self.assertRaises(RuntimeError, s.discard, BadCmp()) self.assertRaises(RuntimeError, s.remove, BadCmp()) def test_cyclical_repr(self): w = ReprWrapper() s = self.thetype([w]) w.value = s if self.thetype == set: self.assertEqual(repr(s), '{set(...)}') else: name = repr(s).partition('(')[0] # strip class name self.assertEqual(repr(s), '%s({%s(...)})' % (name, name)) def test_do_not_rehash_dict_keys(self): n = 10 d = dict.fromkeys(map(HashCountingInt, range(n))) self.assertEqual(sum(elem.hash_count for elem in d), n) s = self.thetype(d) self.assertEqual(sum(elem.hash_count for elem in d), n) s.difference(d) self.assertEqual(sum(elem.hash_count for elem in d), n) if hasattr(s, 'symmetric_difference_update'): s.symmetric_difference_update(d) self.assertEqual(sum(elem.hash_count for elem in d), n) d2 = dict.fromkeys(set(d)) self.assertEqual(sum(elem.hash_count for elem in d), n) d3 = dict.fromkeys(frozenset(d)) self.assertEqual(sum(elem.hash_count for elem in d), n) d3 = dict.fromkeys(frozenset(d), 123) self.assertEqual(sum(elem.hash_count for elem in d), n) self.assertEqual(d3, dict.fromkeys(d, 123)) def test_container_iterator(self): # Bug #3680: tp_traverse was not implemented for set iterator object class C(object): pass obj = C() ref = weakref.ref(obj) container = set([obj, 1]) obj.x = iter(container) del obj, container gc.collect() self.assertTrue(ref() is None, "Cycle was not collected") def test_free_after_iterating(self): support.check_free_after_iterating(self, iter, self.thetype) class TestSet(TestJointOps, unittest.TestCase): thetype = set basetype = set def test_init(self): s = self.thetype() s.__init__(self.word) self.assertEqual(s, set(self.word)) s.__init__(self.otherword) self.assertEqual(s, set(self.otherword)) self.assertRaises(TypeError, s.__init__, s, 2) self.assertRaises(TypeError, s.__init__, 1) def test_constructor_identity(self): s = self.thetype(range(3)) t = self.thetype(s) self.assertNotEqual(id(s), id(t)) def test_set_literal(self): s = set([1,2,3]) t = {1,2,3} self.assertEqual(s, t) def test_set_literal_insertion_order(self): # SF Issue #26020 -- Expect left to right insertion s = {1, 1.0, True} self.assertEqual(len(s), 1) stored_value = s.pop() self.assertEqual(type(stored_value), int) def test_set_literal_evaluation_order(self): # Expect left to right expression evaluation events = [] def record(obj): events.append(obj) s = {record(1), record(2), record(3)} self.assertEqual(events, [1, 2, 3]) def test_hash(self): self.assertRaises(TypeError, hash, self.s) def test_clear(self): self.s.clear() self.assertEqual(self.s, set()) self.assertEqual(len(self.s), 0) def test_copy(self): dup = self.s.copy() self.assertEqual(self.s, dup) self.assertNotEqual(id(self.s), id(dup)) self.assertEqual(type(dup), self.basetype) def test_add(self): self.s.add('Q') self.assertIn('Q', self.s) dup = self.s.copy() self.s.add('Q') self.assertEqual(self.s, dup) self.assertRaises(TypeError, self.s.add, []) def test_remove(self): self.s.remove('a') self.assertNotIn('a', self.s) self.assertRaises(KeyError, self.s.remove, 'Q') self.assertRaises(TypeError, self.s.remove, []) s = self.thetype([frozenset(self.word)]) self.assertIn(self.thetype(self.word), s) s.remove(self.thetype(self.word)) self.assertNotIn(self.thetype(self.word), s) self.assertRaises(KeyError, self.s.remove, self.thetype(self.word)) def test_remove_keyerror_unpacking(self): # bug: www.python.org/sf/1576657 for v1 in ['Q', (1,)]: try: self.s.remove(v1) except KeyError as e: v2 = e.args[0] self.assertEqual(v1, v2) else: self.fail() def test_remove_keyerror_set(self): key = self.thetype([3, 4]) try: self.s.remove(key) except KeyError as e: self.assertTrue(e.args[0] is key, "KeyError should be {0}, not {1}".format(key, e.args[0])) else: self.fail() def test_discard(self): self.s.discard('a') self.assertNotIn('a', self.s) self.s.discard('Q') self.assertRaises(TypeError, self.s.discard, []) s = self.thetype([frozenset(self.word)]) self.assertIn(self.thetype(self.word), s) s.discard(self.thetype(self.word)) self.assertNotIn(self.thetype(self.word), s) s.discard(self.thetype(self.word)) def test_pop(self): for i in range(len(self.s)): elem = self.s.pop() self.assertNotIn(elem, self.s) self.assertRaises(KeyError, self.s.pop) def test_update(self): retval = self.s.update(self.otherword) self.assertEqual(retval, None) for c in (self.word + self.otherword): self.assertIn(c, self.s) self.assertRaises(PassThru, self.s.update, check_pass_thru()) self.assertRaises(TypeError, self.s.update, [[]]) for p, q in (('cdc', 'abcd'), ('efgfe', 'abcefg'), ('ccb', 'abc'), ('ef', 'abcef')): for C in set, frozenset, dict.fromkeys, str, list, tuple: s = self.thetype('abcba') self.assertEqual(s.update(C(p)), None) self.assertEqual(s, set(q)) for p in ('cdc', 'efgfe', 'ccb', 'ef', 'abcda'): q = 'ahi' for C in set, frozenset, dict.fromkeys, str, list, tuple: s = self.thetype('abcba') self.assertEqual(s.update(C(p), C(q)), None) self.assertEqual(s, set(s) | set(p) | set(q)) def test_ior(self): self.s |= set(self.otherword) for c in (self.word + self.otherword): self.assertIn(c, self.s) def test_intersection_update(self): retval = self.s.intersection_update(self.otherword) self.assertEqual(retval, None) for c in (self.word + self.otherword): if c in self.otherword and c in self.word: self.assertIn(c, self.s) else: self.assertNotIn(c, self.s) self.assertRaises(PassThru, self.s.intersection_update, check_pass_thru()) self.assertRaises(TypeError, self.s.intersection_update, [[]]) for p, q in (('cdc', 'c'), ('efgfe', ''), ('ccb', 'bc'), ('ef', '')): for C in set, frozenset, dict.fromkeys, str, list, tuple: s = self.thetype('abcba') self.assertEqual(s.intersection_update(C(p)), None) self.assertEqual(s, set(q)) ss = 'abcba' s = self.thetype(ss) t = 'cbc' self.assertEqual(s.intersection_update(C(p), C(t)), None) self.assertEqual(s, set('abcba')&set(p)&set(t)) def test_iand(self): self.s &= set(self.otherword) for c in (self.word + self.otherword): if c in self.otherword and c in self.word: self.assertIn(c, self.s) else: self.assertNotIn(c, self.s) def test_difference_update(self): retval = self.s.difference_update(self.otherword) self.assertEqual(retval, None) for c in (self.word + self.otherword): if c in self.word and c not in self.otherword: self.assertIn(c, self.s) else: self.assertNotIn(c, self.s) self.assertRaises(PassThru, self.s.difference_update, check_pass_thru()) self.assertRaises(TypeError, self.s.difference_update, [[]]) self.assertRaises(TypeError, self.s.symmetric_difference_update, [[]]) for p, q in (('cdc', 'ab'), ('efgfe', 'abc'), ('ccb', 'a'), ('ef', 'abc')): for C in set, frozenset, dict.fromkeys, str, list, tuple: s = self.thetype('abcba') self.assertEqual(s.difference_update(C(p)), None) self.assertEqual(s, set(q)) s = self.thetype('abcdefghih') s.difference_update() self.assertEqual(s, self.thetype('abcdefghih')) s = self.thetype('abcdefghih') s.difference_update(C('aba')) self.assertEqual(s, self.thetype('cdefghih')) s = self.thetype('abcdefghih') s.difference_update(C('cdc'), C('aba')) self.assertEqual(s, self.thetype('efghih')) def test_isub(self): self.s -= set(self.otherword) for c in (self.word + self.otherword): if c in self.word and c not in self.otherword: self.assertIn(c, self.s) else: self.assertNotIn(c, self.s) def test_symmetric_difference_update(self): retval = self.s.symmetric_difference_update(self.otherword) self.assertEqual(retval, None) for c in (self.word + self.otherword): if (c in self.word) ^ (c in self.otherword): self.assertIn(c, self.s) else: self.assertNotIn(c, self.s) self.assertRaises(PassThru, self.s.symmetric_difference_update, check_pass_thru()) self.assertRaises(TypeError, self.s.symmetric_difference_update, [[]]) for p, q in (('cdc', 'abd'), ('efgfe', 'abcefg'), ('ccb', 'a'), ('ef', 'abcef')): for C in set, frozenset, dict.fromkeys, str, list, tuple: s = self.thetype('abcba') self.assertEqual(s.symmetric_difference_update(C(p)), None) self.assertEqual(s, set(q)) def test_ixor(self): self.s ^= set(self.otherword) for c in (self.word + self.otherword): if (c in self.word) ^ (c in self.otherword): self.assertIn(c, self.s) else: self.assertNotIn(c, self.s) def test_inplace_on_self(self): t = self.s.copy() t |= t self.assertEqual(t, self.s) t &= t self.assertEqual(t, self.s) t -= t self.assertEqual(t, self.thetype()) t = self.s.copy() t ^= t self.assertEqual(t, self.thetype()) def test_weakref(self): s = self.thetype('gallahad') p = weakref.proxy(s) self.assertEqual(str(p), str(s)) s = None support.gc_collect() # For PyPy or other GCs. self.assertRaises(ReferenceError, str, p) def test_rich_compare(self): class TestRichSetCompare: def __gt__(self, some_set): self.gt_called = True return False def __lt__(self, some_set): self.lt_called = True return False def __ge__(self, some_set): self.ge_called = True return False def __le__(self, some_set): self.le_called = True return False # This first tries the builtin rich set comparison, which doesn't know # how to handle the custom object. Upon returning NotImplemented, the # corresponding comparison on the right object is invoked. myset = {1, 2, 3} myobj = TestRichSetCompare() myset < myobj self.assertTrue(myobj.gt_called) myobj = TestRichSetCompare() myset > myobj self.assertTrue(myobj.lt_called) myobj = TestRichSetCompare() myset <= myobj self.assertTrue(myobj.ge_called) myobj = TestRichSetCompare() myset >= myobj self.assertTrue(myobj.le_called) @unittest.skipUnless(hasattr(set, "test_c_api"), 'C API test only available in a debug build') def test_c_api(self): self.assertEqual(set().test_c_api(), True) class SetSubclass(set): pass class TestSetSubclass(TestSet): thetype = SetSubclass basetype = set def test_keywords_in_subclass(self): class subclass(set): pass u = subclass([1, 2]) self.assertIs(type(u), subclass) self.assertEqual(set(u), {1, 2}) with self.assertRaises(TypeError): subclass(sequence=()) class subclass_with_init(set): def __init__(self, arg, newarg=None): super().__init__(arg) self.newarg = newarg u = subclass_with_init([1, 2], newarg=3) self.assertIs(type(u), subclass_with_init) self.assertEqual(set(u), {1, 2}) self.assertEqual(u.newarg, 3) class subclass_with_new(set): def __new__(cls, arg, newarg=None): self = super().__new__(cls, arg) self.newarg = newarg return self u = subclass_with_new([1, 2], newarg=3) self.assertIs(type(u), subclass_with_new) self.assertEqual(set(u), {1, 2}) self.assertEqual(u.newarg, 3) class TestFrozenSet(TestJointOps, unittest.TestCase): thetype = frozenset basetype = frozenset def test_init(self): s = self.thetype(self.word) s.__init__(self.otherword) self.assertEqual(s, set(self.word)) def test_constructor_identity(self): s = self.thetype(range(3)) t = self.thetype(s) self.assertEqual(id(s), id(t)) def test_hash(self): self.assertEqual(hash(self.thetype('abcdeb')), hash(self.thetype('ebecda'))) # make sure that all permutations give the same hash value n = 100 seq = [randrange(n) for i in range(n)] results = set() for i in range(200): shuffle(seq) results.add(hash(self.thetype(seq))) self.assertEqual(len(results), 1) def test_copy(self): dup = self.s.copy() self.assertEqual(id(self.s), id(dup)) def test_frozen_as_dictkey(self): seq = list(range(10)) + list('abcdefg') + ['apple'] key1 = self.thetype(seq) key2 = self.thetype(reversed(seq)) self.assertEqual(key1, key2) self.assertNotEqual(id(key1), id(key2)) d = {} d[key1] = 42 self.assertEqual(d[key2], 42) def test_hash_caching(self): f = self.thetype('abcdcda') self.assertEqual(hash(f), hash(f)) def test_hash_effectiveness(self): n = 13 hashvalues = set() addhashvalue = hashvalues.add elemmasks = [(i+1, 1<=": "issuperset", } reverse = {"==": "==", "!=": "!=", "<": ">", ">": "<", "<=": ">=", ">=": "<=", } def test_issubset(self): x = self.left y = self.right for case in "!=", "==", "<", "<=", ">", ">=": expected = case in self.cases # Test the binary infix spelling. result = eval("x" + case + "y", locals()) self.assertEqual(result, expected) # Test the "friendly" method-name spelling, if one exists. if case in TestSubsets.case2method: method = getattr(x, TestSubsets.case2method[case]) result = method(y) self.assertEqual(result, expected) # Now do the same for the operands reversed. rcase = TestSubsets.reverse[case] result = eval("y" + rcase + "x", locals()) self.assertEqual(result, expected) if rcase in TestSubsets.case2method: method = getattr(y, TestSubsets.case2method[rcase]) result = method(x) self.assertEqual(result, expected) #------------------------------------------------------------------------------ class TestSubsetEqualEmpty(TestSubsets, unittest.TestCase): left = set() right = set() name = "both empty" cases = "==", "<=", ">=" #------------------------------------------------------------------------------ class TestSubsetEqualNonEmpty(TestSubsets, unittest.TestCase): left = set([1, 2]) right = set([1, 2]) name = "equal pair" cases = "==", "<=", ">=" #------------------------------------------------------------------------------ class TestSubsetEmptyNonEmpty(TestSubsets, unittest.TestCase): left = set() right = set([1, 2]) name = "one empty, one non-empty" cases = "!=", "<", "<=" #------------------------------------------------------------------------------ class TestSubsetPartial(TestSubsets, unittest.TestCase): left = set([1]) right = set([1, 2]) name = "one a non-empty proper subset of other" cases = "!=", "<", "<=" #------------------------------------------------------------------------------ class TestSubsetNonOverlap(TestSubsets, unittest.TestCase): left = set([1]) right = set([2]) name = "neither empty, neither contains" cases = "!=" #============================================================================== class TestOnlySetsInBinaryOps: def test_eq_ne(self): # Unlike the others, this is testing that == and != *are* allowed. self.assertEqual(self.other == self.set, False) self.assertEqual(self.set == self.other, False) self.assertEqual(self.other != self.set, True) self.assertEqual(self.set != self.other, True) def test_ge_gt_le_lt(self): self.assertRaises(TypeError, lambda: self.set < self.other) self.assertRaises(TypeError, lambda: self.set <= self.other) self.assertRaises(TypeError, lambda: self.set > self.other) self.assertRaises(TypeError, lambda: self.set >= self.other) self.assertRaises(TypeError, lambda: self.other < self.set) self.assertRaises(TypeError, lambda: self.other <= self.set) self.assertRaises(TypeError, lambda: self.other > self.set) self.assertRaises(TypeError, lambda: self.other >= self.set) def test_update_operator(self): try: self.set |= self.other except TypeError: pass else: self.fail("expected TypeError") def test_update(self): if self.otherIsIterable: self.set.update(self.other) else: self.assertRaises(TypeError, self.set.update, self.other) def test_union(self): self.assertRaises(TypeError, lambda: self.set | self.other) self.assertRaises(TypeError, lambda: self.other | self.set) if self.otherIsIterable: self.set.union(self.other) else: self.assertRaises(TypeError, self.set.union, self.other) def test_intersection_update_operator(self): try: self.set &= self.other except TypeError: pass else: self.fail("expected TypeError") def test_intersection_update(self): if self.otherIsIterable: self.set.intersection_update(self.other) else: self.assertRaises(TypeError, self.set.intersection_update, self.other) def test_intersection(self): self.assertRaises(TypeError, lambda: self.set & self.other) self.assertRaises(TypeError, lambda: self.other & self.set) if self.otherIsIterable: self.set.intersection(self.other) else: self.assertRaises(TypeError, self.set.intersection, self.other) def test_sym_difference_update_operator(self): try: self.set ^= self.other except TypeError: pass else: self.fail("expected TypeError") def test_sym_difference_update(self): if self.otherIsIterable: self.set.symmetric_difference_update(self.other) else: self.assertRaises(TypeError, self.set.symmetric_difference_update, self.other) def test_sym_difference(self): self.assertRaises(TypeError, lambda: self.set ^ self.other) self.assertRaises(TypeError, lambda: self.other ^ self.set) if self.otherIsIterable: self.set.symmetric_difference(self.other) else: self.assertRaises(TypeError, self.set.symmetric_difference, self.other) def test_difference_update_operator(self): try: self.set -= self.other except TypeError: pass else: self.fail("expected TypeError") def test_difference_update(self): if self.otherIsIterable: self.set.difference_update(self.other) else: self.assertRaises(TypeError, self.set.difference_update, self.other) def test_difference(self): self.assertRaises(TypeError, lambda: self.set - self.other) self.assertRaises(TypeError, lambda: self.other - self.set) if self.otherIsIterable: self.set.difference(self.other) else: self.assertRaises(TypeError, self.set.difference, self.other) #------------------------------------------------------------------------------ class TestOnlySetsNumeric(TestOnlySetsInBinaryOps, unittest.TestCase): def setUp(self): self.set = set((1, 2, 3)) self.other = 19 self.otherIsIterable = False #------------------------------------------------------------------------------ class TestOnlySetsDict(TestOnlySetsInBinaryOps, unittest.TestCase): def setUp(self): self.set = set((1, 2, 3)) self.other = {1:2, 3:4} self.otherIsIterable = True #------------------------------------------------------------------------------ class TestOnlySetsOperator(TestOnlySetsInBinaryOps, unittest.TestCase): def setUp(self): self.set = set((1, 2, 3)) self.other = operator.add self.otherIsIterable = False #------------------------------------------------------------------------------ class TestOnlySetsTuple(TestOnlySetsInBinaryOps, unittest.TestCase): def setUp(self): self.set = set((1, 2, 3)) self.other = (2, 4, 6) self.otherIsIterable = True #------------------------------------------------------------------------------ class TestOnlySetsString(TestOnlySetsInBinaryOps, unittest.TestCase): def setUp(self): self.set = set((1, 2, 3)) self.other = 'abc' self.otherIsIterable = True #------------------------------------------------------------------------------ class TestOnlySetsGenerator(TestOnlySetsInBinaryOps, unittest.TestCase): def setUp(self): def gen(): for i in range(0, 10, 2): yield i self.set = set((1, 2, 3)) self.other = gen() self.otherIsIterable = True #============================================================================== class TestCopying: def test_copy(self): dup = self.set.copy() dup_list = sorted(dup, key=repr) set_list = sorted(self.set, key=repr) self.assertEqual(len(dup_list), len(set_list)) for i in range(len(dup_list)): self.assertTrue(dup_list[i] is set_list[i]) def test_deep_copy(self): dup = copy.deepcopy(self.set) ##print type(dup), repr(dup) dup_list = sorted(dup, key=repr) set_list = sorted(self.set, key=repr) self.assertEqual(len(dup_list), len(set_list)) for i in range(len(dup_list)): self.assertEqual(dup_list[i], set_list[i]) #------------------------------------------------------------------------------ class TestCopyingEmpty(TestCopying, unittest.TestCase): def setUp(self): self.set = set() #------------------------------------------------------------------------------ class TestCopyingSingleton(TestCopying, unittest.TestCase): def setUp(self): self.set = set(["hello"]) #------------------------------------------------------------------------------ class TestCopyingTriple(TestCopying, unittest.TestCase): def setUp(self): self.set = set(["zero", 0, None]) #------------------------------------------------------------------------------ class TestCopyingTuple(TestCopying, unittest.TestCase): def setUp(self): self.set = set([(1, 2)]) #------------------------------------------------------------------------------ class TestCopyingNested(TestCopying, unittest.TestCase): def setUp(self): self.set = set([((1, 2), (3, 4))]) #============================================================================== class TestIdentities(unittest.TestCase): def setUp(self): self.a = set('abracadabra') self.b = set('alacazam') def test_binopsVsSubsets(self): a, b = self.a, self.b self.assertTrue(a - b < a) self.assertTrue(b - a < b) self.assertTrue(a & b < a) self.assertTrue(a & b < b) self.assertTrue(a | b > a) self.assertTrue(a | b > b) self.assertTrue(a ^ b < a | b) def test_commutativity(self): a, b = self.a, self.b self.assertEqual(a&b, b&a) self.assertEqual(a|b, b|a) self.assertEqual(a^b, b^a) if a != b: self.assertNotEqual(a-b, b-a) def test_summations(self): # check that sums of parts equal the whole a, b = self.a, self.b self.assertEqual((a-b)|(a&b)|(b-a), a|b) self.assertEqual((a&b)|(a^b), a|b) self.assertEqual(a|(b-a), a|b) self.assertEqual((a-b)|b, a|b) self.assertEqual((a-b)|(a&b), a) self.assertEqual((b-a)|(a&b), b) self.assertEqual((a-b)|(b-a), a^b) def test_exclusion(self): # check that inverse operations show non-overlap a, b, zero = self.a, self.b, set() self.assertEqual((a-b)&b, zero) self.assertEqual((b-a)&a, zero) self.assertEqual((a&b)&(a^b), zero) # Tests derived from test_itertools.py ======================================= def R(seqn): 'Regular generator' for i in seqn: yield i class G: 'Sequence using __getitem__' def __init__(self, seqn): self.seqn = seqn def __getitem__(self, i): return self.seqn[i] class I: 'Sequence using iterator protocol' def __init__(self, seqn): self.seqn = seqn self.i = 0 def __iter__(self): return self def __next__(self): if self.i >= len(self.seqn): raise StopIteration v = self.seqn[self.i] self.i += 1 return v class Ig: 'Sequence using iterator protocol defined with a generator' def __init__(self, seqn): self.seqn = seqn self.i = 0 def __iter__(self): for val in self.seqn: yield val class X: 'Missing __getitem__ and __iter__' def __init__(self, seqn): self.seqn = seqn self.i = 0 def __next__(self): if self.i >= len(self.seqn): raise StopIteration v = self.seqn[self.i] self.i += 1 return v class N: 'Iterator missing __next__()' def __init__(self, seqn): self.seqn = seqn self.i = 0 def __iter__(self): return self class E: 'Test propagation of exceptions' def __init__(self, seqn): self.seqn = seqn self.i = 0 def __iter__(self): return self def __next__(self): 3 // 0 class S: 'Test immediate stop' def __init__(self, seqn): pass def __iter__(self): return self def __next__(self): raise StopIteration from itertools import chain def L(seqn): 'Test multiple tiers of iterators' return chain(map(lambda x:x, R(Ig(G(seqn))))) class TestVariousIteratorArgs(unittest.TestCase): def test_constructor(self): for cons in (set, frozenset): for s in ("123", "", range(1000), ('do', 1.2), range(2000,2200,5)): for g in (G, I, Ig, S, L, R): self.assertEqual(sorted(cons(g(s)), key=repr), sorted(g(s), key=repr)) self.assertRaises(TypeError, cons , X(s)) self.assertRaises(TypeError, cons , N(s)) self.assertRaises(ZeroDivisionError, cons , E(s)) def test_inline_methods(self): s = set('november') for data in ("123", "", range(1000), ('do', 1.2), range(2000,2200,5), 'december'): for meth in (s.union, s.intersection, s.difference, s.symmetric_difference, s.isdisjoint): for g in (G, I, Ig, L, R): expected = meth(data) actual = meth(g(data)) if isinstance(expected, bool): self.assertEqual(actual, expected) else: self.assertEqual(sorted(actual, key=repr), sorted(expected, key=repr)) self.assertRaises(TypeError, meth, X(s)) self.assertRaises(TypeError, meth, N(s)) self.assertRaises(ZeroDivisionError, meth, E(s)) def test_inplace_methods(self): for data in ("123", "", range(1000), ('do', 1.2), range(2000,2200,5), 'december'): for methname in ('update', 'intersection_update', 'difference_update', 'symmetric_difference_update'): for g in (G, I, Ig, S, L, R): s = set('january') t = s.copy() getattr(s, methname)(list(g(data))) getattr(t, methname)(g(data)) self.assertEqual(sorted(s, key=repr), sorted(t, key=repr)) self.assertRaises(TypeError, getattr(set('january'), methname), X(data)) self.assertRaises(TypeError, getattr(set('january'), methname), N(data)) self.assertRaises(ZeroDivisionError, getattr(set('january'), methname), E(data)) class bad_eq: def __eq__(self, other): if be_bad: set2.clear() raise ZeroDivisionError return self is other def __hash__(self): return 0 class bad_dict_clear: def __eq__(self, other): if be_bad: dict2.clear() return self is other def __hash__(self): return 0 class TestWeirdBugs(unittest.TestCase): def test_8420_set_merge(self): # This used to segfault global be_bad, set2, dict2 be_bad = False set1 = {bad_eq()} set2 = {bad_eq() for i in range(75)} be_bad = True self.assertRaises(ZeroDivisionError, set1.update, set2) be_bad = False set1 = {bad_dict_clear()} dict2 = {bad_dict_clear(): None} be_bad = True set1.symmetric_difference_update(dict2) def test_iter_and_mutate(self): # Issue #24581 s = set(range(100)) s.clear() s.update(range(100)) si = iter(s) s.clear() a = list(range(100)) s.update(range(100)) list(si) def test_merge_and_mutate(self): class X: def __hash__(self): return hash(0) def __eq__(self, o): other.clear() return False other = set() other = {X() for i in range(10)} s = {0} s.update(other) # Application tests (based on David Eppstein's graph recipes ==================================== def powerset(U): """Generates all subsets of a set or sequence U.""" U = iter(U) try: x = frozenset([next(U)]) for S in powerset(U): yield S yield S | x except StopIteration: yield frozenset() def cube(n): """Graph of n-dimensional hypercube.""" singletons = [frozenset([x]) for x in range(n)] return dict([(x, frozenset([x^s for s in singletons])) for x in powerset(range(n))]) def linegraph(G): """Graph, the vertices of which are edges of G, with two vertices being adjacent iff the corresponding edges share a vertex.""" L = {} for x in G: for y in G[x]: nx = [frozenset([x,z]) for z in G[x] if z != y] ny = [frozenset([y,z]) for z in G[y] if z != x] L[frozenset([x,y])] = frozenset(nx+ny) return L def faces(G): 'Return a set of faces in G. Where a face is a set of vertices on that face' # currently limited to triangles,squares, and pentagons f = set() for v1, edges in G.items(): for v2 in edges: for v3 in G[v2]: if v1 == v3: continue if v1 in G[v3]: f.add(frozenset([v1, v2, v3])) else: for v4 in G[v3]: if v4 == v2: continue if v1 in G[v4]: f.add(frozenset([v1, v2, v3, v4])) else: for v5 in G[v4]: if v5 == v3 or v5 == v2: continue if v1 in G[v5]: f.add(frozenset([v1, v2, v3, v4, v5])) return f class TestGraphs(unittest.TestCase): def test_cube(self): g = cube(3) # vert --> {v1, v2, v3} vertices1 = set(g) self.assertEqual(len(vertices1), 8) # eight vertices for edge in g.values(): self.assertEqual(len(edge), 3) # each vertex connects to three edges vertices2 = set(v for edges in g.values() for v in edges) self.assertEqual(vertices1, vertices2) # edge vertices in original set cubefaces = faces(g) self.assertEqual(len(cubefaces), 6) # six faces for face in cubefaces: self.assertEqual(len(face), 4) # each face is a square def test_cuboctahedron(self): # http://en.wikipedia.org/wiki/Cuboctahedron # 8 triangular faces and 6 square faces # 12 identical vertices each connecting a triangle and square g = cube(3) cuboctahedron = linegraph(g) # V( --> {V1, V2, V3, V4} self.assertEqual(len(cuboctahedron), 12)# twelve vertices vertices = set(cuboctahedron) for edges in cuboctahedron.values(): self.assertEqual(len(edges), 4) # each vertex connects to four other vertices othervertices = set(edge for edges in cuboctahedron.values() for edge in edges) self.assertEqual(vertices, othervertices) # edge vertices in original set cubofaces = faces(cuboctahedron) facesizes = collections.defaultdict(int) for face in cubofaces: facesizes[len(face)] += 1 self.assertEqual(facesizes[3], 8) # eight triangular faces self.assertEqual(facesizes[4], 6) # six square faces for vertex in cuboctahedron: edge = vertex # Cuboctahedron vertices are edges in Cube self.assertEqual(len(edge), 2) # Two cube vertices define an edge for cubevert in edge: self.assertIn(cubevert, g) #============================================================================== if __name__ == "__main__": unittest.main()