This ensures the source directory is not modified at build time, and different builds (e.g. different versions or GIL vs no-GIL) do not have conflicts.
Every PyThreadState instance is now actually a _PyThreadStateImpl.
It is safe to cast from `PyThreadState*` to `_PyThreadStateImpl*` and back.
The _PyThreadStateImpl will contain fields that we do not want to expose
in the public C API.
Critical sections are helpers to replace the global interpreter lock
with finer grained locking. They provide similar guarantees to the GIL
and avoid the deadlock risk that plain locking involves. Critical
sections are implicitly ended whenever the GIL would be released. They
are resumed when the GIL would be acquired. Nested critical sections
behave as if the sections were interleaved.
- There is no longer a separate Python/executor.c file.
- Conventions in Python/bytecodes.c are slightly different -- don't use `goto error`,
you must use `GOTO_ERROR(error)` (same for others like `unused_local_error`).
- The `TIER_ONE` and `TIER_TWO` symbols are only valid in the generated (.c.h) files.
- In Lib/test/support/__init__.py, `Py_C_RECURSION_LIMIT` is imported from `_testcapi`.
- On Windows, in debug mode, stack allocation grows from 8MiB to 12MiB.
- **Beware!** This changes the env vars to enable uops and their debugging
to `PYTHON_UOPS` and `PYTHON_LLTRACE`.
This is partly to clear this stuff out of pystate.c, but also in preparation for moving some code out of _xxsubinterpretersmodule.c. This change also moves this stuff to the internal API (new: Include/internal/pycore_crossinterp.h). @vstinner did this previously and I undid it. Now I'm re-doing it. :/
* Add mimalloc v2.12
Modified src/alloc.c to remove include of alloc-override.c and not
compile new handler.
Did not include the following files:
- include/mimalloc-new-delete.h
- include/mimalloc-override.h
- src/alloc-override-osx.c
- src/alloc-override.c
- src/static.c
- src/region.c
mimalloc is thread safe and shares a single heap across all runtimes,
therefore finalization and getting global allocated blocks across all
runtimes is different.
* mimalloc: minimal changes for use in Python:
- remove debug spam for freeing large allocations
- use same bytes (0xDD) for freed allocations in CPython and mimalloc
This is important for the test_capi debug memory tests
* Don't export mimalloc symbol in libpython.
* Enable mimalloc as Python allocator option.
* Add mimalloc MIT license.
* Log mimalloc in Lib/test/pythoninfo.py.
* Document new mimalloc support.
* Use macro defs for exports as done in:
https://github.com/python/cpython/pull/31164/
Co-authored-by: Sam Gross <colesbury@gmail.com>
Co-authored-by: Christian Heimes <christian@python.org>
Co-authored-by: Victor Stinner <vstinner@python.org>
Move the following private functions and structures to
pycore_modsupport.h internal C API:
* _PyArg_BadArgument()
* _PyArg_CheckPositional()
* _PyArg_NoKeywords()
* _PyArg_NoPositional()
* _PyArg_ParseStack()
* _PyArg_ParseStackAndKeywords()
* _PyArg_Parser structure
* _PyArg_UnpackKeywords()
* _PyArg_UnpackKeywordsWithVararg()
* _PyArg_UnpackStack()
* _Py_ANY_VARARGS()
Changes:
* Python/getargs.h now includes pycore_modsupport.h to export
functions.
* clinic.py now adds pycore_modsupport.h when one of these functions
is used.
* Add pycore_modsupport.h includes when a C extension uses one of
these functions.
* Define Py_BUILD_CORE_MODULE in C extensions which now include
directly or indirectly (via code generated by Argument Clinic)
pycore_modsupport.h:
* _csv
* _curses_panel
* _dbm
* _gdbm
* _multiprocessing.posixshmem
* _sqlite.row
* _statistics
* grp
* resource
* syslog
* _testcapi: bad_get() no longer uses METH_FASTCALL calling
convention but METH_VARARGS. Replace _PyArg_UnpackStack() with
PyArg_ParseTuple().
* _testcapi: add PYTESTCAPI_NEED_INTERNAL_API macro which is defined
by _testcapi sub-modules which need the internal C API
(pycore_modsupport.h): exceptions.c, float.c, vectorcall.c,
watchers.c.
* Remove Include/cpython/modsupport.h header file.
Include/modsupport.h no longer includes the removed header file.
* Fix mypy clinic.py
* The lexer, which include the actual lexeme producing logic, goes into
the `lexer` directory.
* The wrappers, one wrapper per input mode (file, string, utf-8, and
readline), go into the `tokenizer` directory and include logic for
creating a lexer instance and managing the buffer for different modes.
---------
Co-authored-by: Pablo Galindo <pablogsal@gmail.com>
Co-authored-by: blurb-it[bot] <43283697+blurb-it[bot]@users.noreply.github.com>
PyMutex is a one byte lock with fast, inlineable lock and unlock functions for the common uncontended case. The design is based on WebKit's WTF::Lock.
PyMutex is built using the _PyParkingLot APIs, which provides a cross-platform futex-like API (based on WebKit's WTF::ParkingLot). This internal API will be used for building other synchronization primitives used to implement PEP 703, such as one-time initialization and events.
This also includes tests and a mini benchmark in Tools/lockbench/lockbench.py to compare with the existing PyThread_type_lock.
Uncontended acquisition + release:
* Linux (x86-64): PyMutex: 11 ns, PyThread_type_lock: 44 ns
* macOS (arm64): PyMutex: 13 ns, PyThread_type_lock: 18 ns
* Windows (x86-64): PyMutex: 13 ns, PyThread_type_lock: 38 ns
PR Overview:
The primary purpose of this PR is to implement PyMutex, but there are a number of support pieces (described below).
* PyMutex: A 1-byte lock that doesn't require memory allocation to initialize and is generally faster than the existing PyThread_type_lock. The API is internal only for now.
* _PyParking_Lot: A futex-like API based on the API of the same name in WebKit. Used to implement PyMutex.
* _PyRawMutex: A word sized lock used to implement _PyParking_Lot.
* PyEvent: A one time event. This was used a bunch in the "nogil" fork and is useful for testing the PyMutex implementation, so I've included it as part of the PR.
* pycore_llist.h: Defines common operations on doubly-linked list. Not strictly necessary (could do the list operations manually), but they come up frequently in the "nogil" fork. ( Similar to https://man.freebsd.org/cgi/man.cgi?queue)
---------
Co-authored-by: Eric Snow <ericsnowcurrently@gmail.com>
Statistics gathering is now off by default. Use the "-X pystats"
command line option or set the new PYTHONSTATS environment variable
to 1 to turn statistics gathering on at Python startup.
Statistics are no longer dumped at exit if statistics gathering was
off or statistics have been cleared.
Changes:
* Add PYTHONSTATS environment variable.
* sys._stats_dump() now returns False if statistics are not dumped
because they are all equal to zero.
* Add PyConfig._pystats member.
* Add tests on sys functions and on setting PyConfig._pystats to 1.
* Add Include/cpython/pystats.h and Include/internal/pycore_pystats.h
header files.
* Rename '_py_stats' variable to '_Py_stats'.
* Exclude Include/cpython/pystats.h from the Py_LIMITED_API.
* Move pystats.h include from object.h to Python.h.
* Add _Py_StatsOn() and _Py_StatsOff() functions. Remove
'_py_stats_struct' variable from the API: make it static in
specialize.c.
* Document API in Include/pystats.h and Include/cpython/pystats.h.
* Complete pystats documentation in Doc/using/configure.rst.
* Don't write "all zeros" stats: if _stats_off() and _stats_clear()
or _stats_dump() were called.
* _PyEval_Fini() now always call _Py_PrintSpecializationStats() which
does nothing if stats are all zeros.
Co-authored-by: Michael Droettboom <mdboom@gmail.com>
This adds a new header that provides atomic operations on common data
types. The intention is that this will be exposed through Python.h,
although that is not the case yet. The only immediate use is in
the test file.
Co-authored-by: Sam Gross <colesbury@gmail.com>
Remove these private functions from the public C API:
* _PyRun_AnyFileObject()
* _PyRun_InteractiveLoopObject()
* _PyRun_SimpleFileObject()
* _Py_SourceAsString()
Move them to the internal C API: add a new pycore_pythonrun.h header
file. No longer export these functions.
Remove the private _Py_Identifier type and related private functions
from the public C API:
* _PyObject_GetAttrId()
* _PyObject_LookupSpecialId()
* _PyObject_SetAttrId()
* _PyType_LookupId()
* _Py_IDENTIFIER()
* _Py_static_string()
* _Py_static_string_init()
Move them to the internal C API: add a new pycore_identifier.h header
file. No longer export these functions.
The _xxsubinterpreters module should not rely on internal API. Some of the functions it uses were recently moved there however. Here we move them back (and expose them properly).
Move the private _PyInterpreterID C API to the internal C API: add a
new pycore_interp_id.h header file.
Remove Include/interpreteridobject.h and
Include/cpython/interpreteridobject.h header files.
Remove the following functions from the C API, move them to the internal C
API: add a new pycore_modsupport.h internal header file:
* PyModule_CreateInitialized()
* _PyArg_NoKwnames()
* _Py_VaBuildStack()
No longer export these functions.
* Remove private _PyTraceMalloc C API functions: move them to the
internal C API.
* Don't export most of these functions anymore, but still export
_PyTraceMalloc_GetTraceback() used by tests.
* Rename Include/tracemalloc.h to Include/cpython/tracemalloc.h
Remove the "cpython/pytime.h" header file: it only contained private
functions. Move functions to the internal pycore_time.h header file.
Move tests from _testcapi to _testinternalcapi. Rename also test
methods to have the same name than tested C functions.
No longer export these functions:
* _PyTime_Add()
* _PyTime_As100Nanoseconds()
* _PyTime_FromMicrosecondsClamp()
* _PyTime_FromTimespec()
* _PyTime_FromTimeval()
* _PyTime_GetPerfCounterWithInfo()
* _PyTime_MulDiv()
Remove the following private functions of the C API:
* _PyCodecInfo_GetIncrementalDecoder()
* _PyCodecInfo_GetIncrementalEncoder()
* _PyCodec_DecodeText()
* _PyCodec_EncodeText()
* _PyCodec_Forget()
* _PyCodec_Lookup()
* _PyCodec_LookupTextEncoding()
Move these functions to a new pycore_codecs.h internal header file.
These functions are no longer exported.
The _xxsubinterpreters module was meant to only use public API. Some internal C-API usage snuck in over the last few years (e.g. gh-28969). This fixes that.
This implements PEP 695, Type Parameter Syntax. It adds support for:
- Generic functions (def func[T](): ...)
- Generic classes (class X[T](): ...)
- Type aliases (type X = ...)
- New scoping when the new syntax is used within a class body
- Compiler and interpreter changes to support the new syntax and scoping rules
Co-authored-by: Marc Mueller <30130371+cdce8p@users.noreply.github.com>
Co-authored-by: Eric Traut <eric@traut.com>
Co-authored-by: Larry Hastings <larry@hastings.org>
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
Replaces our built-in SHA3 implementation with a verified one from the HACL* project.
This implementation is used when OpenSSL does not provide SHA3 or is not present.
3.11 shiped with a very slow tiny sha3 implementation to get off of the <=3.10 reference implementation that wound up having serious bugs. This brings us back to a reasonably performing built-in implementation consistent with what we've just replaced our other guaranteed available standard hash algorithms with: code from the HACL* project.
---------
Co-authored-by: Gregory P. Smith <greg@krypto.org>
* The majority of the monitoring code is in instrumentation.c
* The new instrumentation bytecodes are in bytecodes.c
* legacy_tracing.c adapts the new API to the old sys.setrace and sys.setprofile APIs
The function is like Py_AtExit() but for a single interpreter. This is a companion to the atexit module's register() function, taking a C callback instead of a Python one.
We also update the _xxinterpchannels module to use _Py_AtExit(), which is the motivating case. (This is inspired by pain points felt while working on gh-101660.)
The essentially eliminates the global variable, with the associated benefits. This is also a precursor to isolating this bit of state to PyInterpreterState.
Folks that currently read _Py_RefTotal directly would have to start using _Py_GetGlobalRefTotal() instead.
https://github.com/python/cpython/issues/102304
This deprecates `st_ctime` fields on Windows, with the intent to change them to contain the correct value in 3.14. For now, they should keep returning the creation time as they always have.
This merges their code. They're backed by the same single HACL* static library, having them be a single module simplifies maintenance.
This should unbreak the wasm enscripten builds that currently fail due to linking in --whole-archive mode and the HACL* library appearing twice.
Long unnoticed error fixed: _sha512.SHA384Type was doubly assigned and was actually SHA512Type. Nobody depends on those internal names.
Also rename LIBHACL_ make vars to LIBHACL_SHA2_ in preperation for other future HACL things.
replacing hashlib primitives (for the non-OpenSSL case) with verified implementations from HACL*. This is the first PR in the series, and focuses specifically on SHA2-256 and SHA2-224.
This PR imports Hacl_Streaming_SHA2 into the Python tree. This is the HACL* implementation of SHA2, which combines a core implementation of SHA2 along with a layer of buffer management that allows updating the digest with any number of bytes. This supersedes the previous implementation in the tree.
@franziskuskiefer was kind enough to benchmark the changes: in addition to being verified (thus providing significant safety and security improvements), this implementation also provides a sizeable performance boost!
```
---------------------------------------------------------------
Benchmark Time CPU Iterations
---------------------------------------------------------------
Sha2_256_Streaming 3163 ns 3160 ns 219353 // this PR
LibTomCrypt_Sha2_256 5057 ns 5056 ns 136234 // library used by Python currently
```
The changes in this PR are as follows:
- import the subset of HACL* that covers SHA2-256/224 into `Modules/_hacl`
- rewire sha256module.c to use the HACL* implementation
Co-authored-by: Gregory P. Smith [Google LLC] <greg@krypto.org>
Co-authored-by: Erlend E. Aasland <erlend.aasland@protonmail.com>