Biased reference counting maintains two refcount fields in each object:
`ob_ref_local` and `ob_ref_shared`. The true refcount is the sum of these two
fields. In some cases, when refcounting operations are split across threads,
the ob_ref_shared field can be negative (although the total refcount must be
at least zero). In this case, the thread that decremented the refcount
requests that the owning thread give up ownership and merge the refcount
fields.
Add an option (--enable-experimental-jit for configure-based builds
or --experimental-jit for PCbuild-based ones) to build an
*experimental* just-in-time compiler, based on copy-and-patch (https://fredrikbk.com/publications/copy-and-patch.pdf).
See Tools/jit/README.md for more information on how to install the required build-time tooling.
* gh-112529: Implement GC for free-threaded builds
This implements a mark and sweep GC for the free-threaded builds of
CPython. The implementation relies on mimalloc to find GC tracked
objects (i.e., "containers").
* gh-112529: Use GC heaps for GC allocations in free-threaded builds
The free-threaded build's garbage collector implementation will need to
find GC objects by traversing mimalloc heaps. This hooks up the
allocation calls with the correct heaps by using a thread-local
"current_obj_heap" variable.
* Refactor out setting heap based on type
This splits part of Modules/gcmodule.c of into Python/gc.c, which
now contains the core garbage collection implementation. The Python
module remain in the Modules/gcmodule.c file.
This ensures the source directory is not modified at build time, and different builds (e.g. different versions or GIL vs no-GIL) do not have conflicts.
Every PyThreadState instance is now actually a _PyThreadStateImpl.
It is safe to cast from `PyThreadState*` to `_PyThreadStateImpl*` and back.
The _PyThreadStateImpl will contain fields that we do not want to expose
in the public C API.
In PGO mode, this function caused a compiler error in MSVC.
It turns out that optimizing for space only save the day, and is even faster.
However, without PGO, this is neither necessary nor slower.
Critical sections are helpers to replace the global interpreter lock
with finer grained locking. They provide similar guarantees to the GIL
and avoid the deadlock risk that plain locking involves. Critical
sections are implicitly ended whenever the GIL would be released. They
are resumed when the GIL would be acquired. Nested critical sections
behave as if the sections were interleaved.
- There is no longer a separate Python/executor.c file.
- Conventions in Python/bytecodes.c are slightly different -- don't use `goto error`,
you must use `GOTO_ERROR(error)` (same for others like `unused_local_error`).
- The `TIER_ONE` and `TIER_TWO` symbols are only valid in the generated (.c.h) files.
- In Lib/test/support/__init__.py, `Py_C_RECURSION_LIMIT` is imported from `_testcapi`.
- On Windows, in debug mode, stack allocation grows from 8MiB to 12MiB.
- **Beware!** This changes the env vars to enable uops and their debugging
to `PYTHON_UOPS` and `PYTHON_LLTRACE`.
This is partly to clear this stuff out of pystate.c, but also in preparation for moving some code out of _xxsubinterpretersmodule.c. This change also moves this stuff to the internal API (new: Include/internal/pycore_crossinterp.h). @vstinner did this previously and I undid it. Now I'm re-doing it. :/
* Add mimalloc v2.12
Modified src/alloc.c to remove include of alloc-override.c and not
compile new handler.
Did not include the following files:
- include/mimalloc-new-delete.h
- include/mimalloc-override.h
- src/alloc-override-osx.c
- src/alloc-override.c
- src/static.c
- src/region.c
mimalloc is thread safe and shares a single heap across all runtimes,
therefore finalization and getting global allocated blocks across all
runtimes is different.
* mimalloc: minimal changes for use in Python:
- remove debug spam for freeing large allocations
- use same bytes (0xDD) for freed allocations in CPython and mimalloc
This is important for the test_capi debug memory tests
* Don't export mimalloc symbol in libpython.
* Enable mimalloc as Python allocator option.
* Add mimalloc MIT license.
* Log mimalloc in Lib/test/pythoninfo.py.
* Document new mimalloc support.
* Use macro defs for exports as done in:
https://github.com/python/cpython/pull/31164/
Co-authored-by: Sam Gross <colesbury@gmail.com>
Co-authored-by: Christian Heimes <christian@python.org>
Co-authored-by: Victor Stinner <vstinner@python.org>
* Move existing tests for PySys_GetObject() and PySys_SetObject() into
specialized files.
* Add test for PySys_GetXOptions() using _testcapi.
* Add tests for PySys_FormatStdout(), PySys_FormatStderr(),
PySys_WriteStdout() and PySys_WriteStderr() using ctypes.
Move the following private functions and structures to
pycore_modsupport.h internal C API:
* _PyArg_BadArgument()
* _PyArg_CheckPositional()
* _PyArg_NoKeywords()
* _PyArg_NoPositional()
* _PyArg_ParseStack()
* _PyArg_ParseStackAndKeywords()
* _PyArg_Parser structure
* _PyArg_UnpackKeywords()
* _PyArg_UnpackKeywordsWithVararg()
* _PyArg_UnpackStack()
* _Py_ANY_VARARGS()
Changes:
* Python/getargs.h now includes pycore_modsupport.h to export
functions.
* clinic.py now adds pycore_modsupport.h when one of these functions
is used.
* Add pycore_modsupport.h includes when a C extension uses one of
these functions.
* Define Py_BUILD_CORE_MODULE in C extensions which now include
directly or indirectly (via code generated by Argument Clinic)
pycore_modsupport.h:
* _csv
* _curses_panel
* _dbm
* _gdbm
* _multiprocessing.posixshmem
* _sqlite.row
* _statistics
* grp
* resource
* syslog
* _testcapi: bad_get() no longer uses METH_FASTCALL calling
convention but METH_VARARGS. Replace _PyArg_UnpackStack() with
PyArg_ParseTuple().
* _testcapi: add PYTESTCAPI_NEED_INTERNAL_API macro which is defined
by _testcapi sub-modules which need the internal C API
(pycore_modsupport.h): exceptions.c, float.c, vectorcall.c,
watchers.c.
* Remove Include/cpython/modsupport.h header file.
Include/modsupport.h no longer includes the removed header file.
* Fix mypy clinic.py
* The lexer, which include the actual lexeme producing logic, goes into
the `lexer` directory.
* The wrappers, one wrapper per input mode (file, string, utf-8, and
readline), go into the `tokenizer` directory and include logic for
creating a lexer instance and managing the buffer for different modes.
---------
Co-authored-by: Pablo Galindo <pablogsal@gmail.com>
Co-authored-by: blurb-it[bot] <43283697+blurb-it[bot]@users.noreply.github.com>
When --fast-ci or --slow-ci option is used, regrtest now replaces the
current process with a new process to add "-u -W default -bb -E"
options to Python.
Changes:
* PCbuild/rt.bat and Tools/scripts/run_tests.py no longer need to add
"-u -W default -bb -E" options to Python: it's now done by
regrtest.
* Fix Tools/scripts/run_tests.py: flush stdout before replacing the
process. Previously, buffered messages were lost.