gh-110850: Add PyTime_t C API (GH-115215)

* gh-110850: Add PyTime_t C API

Add PyTime_t API:

* PyTime_t type.
* PyTime_MIN and PyTime_MAX constants.
* PyTime_AsSecondsDouble(), PyTime_Monotonic(),
  PyTime_PerfCounter() and PyTime_GetSystemClock() functions.

Co-authored-by: Victor Stinner <vstinner@python.org>
This commit is contained in:
Petr Viktorin 2024-02-12 18:13:10 +01:00 committed by GitHub
parent c39272e143
commit 879f4546bf
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
19 changed files with 448 additions and 114 deletions

83
Doc/c-api/time.rst Normal file
View File

@ -0,0 +1,83 @@
.. highlight:: c
PyTime C API
============
.. versionadded:: 3.13
The clock C API provides access to system clocks.
It is similar to the Python :mod:`time` module.
For C API related to the :mod:`datetime` module, see :ref:`datetimeobjects`.
Types
-----
.. c:type:: PyTime_t
A timestamp or duration in nanoseconds, represented as a signed 64-bit
integer.
The reference point for timestamps depends on the clock used. For example,
:c:func:`PyTime_Time` returns timestamps relative to the UNIX epoch.
The supported range is around [-292.3 years; +292.3 years].
Using the Unix epoch (January 1st, 1970) as reference, the supported date
range is around [1677-09-21; 2262-04-11].
The exact limits are exposed as constants:
.. c:var:: PyTime_t PyTime_MIN
Minimum value of :c:type:`PyTime_t`.
.. c:var:: PyTime_t PyTime_MAX
Maximum value of :c:type:`PyTime_t`.
Clock Functions
---------------
The following functions take a pointer to a :c:expr:`PyTime_t` that they
set to the value of a particular clock.
Details of each clock are given in the documentation of the corresponding
Python function.
The functions return ``0`` on success, or ``-1`` (with an exception set)
on failure.
On integer overflow, they set the :c:data:`PyExc_OverflowError` exception and
set ``*result`` to the value clamped to the ``[PyTime_MIN; PyTime_MAX]``
range.
(On current systems, integer overflows are likely caused by misconfigured
system time.)
As any other C API (unless otherwise specified), the functions must be called
with the :term:`GIL` held.
.. c:function:: int PyTime_Monotonic(PyTime_t *result)
Read the monotonic clock.
See :func:`time.monotonic` for important details on this clock.
.. c:function:: int PyTime_PerfCounter(PyTime_t *result)
Read the performance counter.
See :func:`time.perf_counter` for important details on this clock.
.. c:function:: int PyTime_Time(PyTime_t *result)
Read the “wall clock” time.
See :func:`time.time` for details important on this clock.
Conversion functions
--------------------
.. c:function:: double PyTime_AsSecondsDouble(PyTime_t t)
Convert a timestamp to a number of seconds as a C :c:expr:`double`.
The function cannot fail, but note that :c:expr:`double` has limited
accuracy for large values.

View File

@ -20,4 +20,5 @@ and parsing function arguments and constructing Python values from C values.
hash.rst
reflection.rst
codec.rst
time.rst
perfmaps.rst

View File

@ -135,11 +135,14 @@ nitpick_ignore = [
('c:type', 'wchar_t'),
('c:type', '__int64'),
('c:type', 'unsigned __int64'),
('c:type', 'double'),
# Standard C structures
('c:struct', 'in6_addr'),
('c:struct', 'in_addr'),
('c:struct', 'stat'),
('c:struct', 'statvfs'),
('c:struct', 'timeval'),
('c:struct', 'timespec'),
# Standard C macros
('c:macro', 'LLONG_MAX'),
('c:macro', 'LLONG_MIN'),
@ -269,12 +272,12 @@ nitpick_ignore += [
('py:meth', 'index'), # list.index, tuple.index, etc.
]
# gh-106948: Copy standard C types declared in the "c:type" domain to the
# "c:identifier" domain, since "c:function" markup looks for types in the
# "c:identifier" domain. Use list() to not iterate on items which are being
# added
# gh-106948: Copy standard C types declared in the "c:type" domain and C
# structures declared in the "c:struct" domain to the "c:identifier" domain,
# since "c:function" markup looks for types in the "c:identifier" domain. Use
# list() to not iterate on items which are being added
for role, name in list(nitpick_ignore):
if role == 'c:type':
if role in ('c:type', 'c:struct'):
nitpick_ignore.append(('c:identifier', name))
del role, name

View File

@ -1516,6 +1516,16 @@ New Features
* Add :c:func:`Py_HashPointer` function to hash a pointer.
(Contributed by Victor Stinner in :gh:`111545`.)
* Add PyTime C API:
* :c:type:`PyTime_t` type.
* :c:var:`PyTime_MIN` and :c:var:`PyTime_MAX` constants.
* :c:func:`PyTime_AsSecondsDouble`
:c:func:`PyTime_Monotonic`, :c:func:`PyTime_PerfCounter`, and
:c:func:`PyTime_Time` functions.
(Contributed by Victor Stinner and Petr Viktorin in :gh:`110850`.)
Porting to Python 3.13
----------------------

View File

@ -97,6 +97,7 @@
#include "weakrefobject.h"
#include "structseq.h"
#include "cpython/picklebufobject.h"
#include "cpython/pytime.h"
#include "codecs.h"
#include "pyerrors.h"
#include "pythread.h"

23
Include/cpython/pytime.h Normal file
View File

@ -0,0 +1,23 @@
// PyTime_t C API: see Doc/c-api/time.rst for the documentation.
#ifndef Py_LIMITED_API
#ifndef Py_PYTIME_H
#define Py_PYTIME_H
#ifdef __cplusplus
extern "C" {
#endif
typedef int64_t PyTime_t;
#define PyTime_MIN INT64_MIN
#define PyTime_MAX INT64_MAX
PyAPI_FUNC(double) PyTime_AsSecondsDouble(PyTime_t t);
PyAPI_FUNC(int) PyTime_Monotonic(PyTime_t *result);
PyAPI_FUNC(int) PyTime_PerfCounter(PyTime_t *result);
PyAPI_FUNC(int) PyTime_Time(PyTime_t *result);
#ifdef __cplusplus
}
#endif
#endif /* Py_PYTIME_H */
#endif /* Py_LIMITED_API */

View File

@ -1,34 +1,39 @@
// The _PyTime_t API is written to use timestamp and timeout values stored in
// various formats and to read clocks.
// Internal PyTime_t C API: see Doc/c-api/time.rst for the documentation.
//
// The _PyTime_t type is an integer to support directly common arithmetic
// operations like t1 + t2.
// The PyTime_t type is an integer to support directly common arithmetic
// operations such as t1 + t2.
//
// The _PyTime_t API supports a resolution of 1 nanosecond. The _PyTime_t type
// is signed to support negative timestamps. The supported range is around
// [-292.3 years; +292.3 years]. Using the Unix epoch (January 1st, 1970), the
// supported date range is around [1677-09-21; 2262-04-11].
// Time formats:
//
// Formats:
// * Seconds.
// * Seconds as a floating point number (C double).
// * Milliseconds (10^-3 seconds).
// * Microseconds (10^-6 seconds).
// * 100 nanoseconds (10^-7 seconds), used on Windows.
// * Nanoseconds (10^-9 seconds).
// * timeval structure, 1 microsecond (10^-6 seconds).
// * timespec structure, 1 nanosecond (10^-9 seconds).
//
// * seconds
// * seconds as a floating pointer number (C double)
// * milliseconds (10^-3 seconds)
// * microseconds (10^-6 seconds)
// * 100 nanoseconds (10^-7 seconds)
// * nanoseconds (10^-9 seconds)
// * timeval structure, 1 microsecond resolution (10^-6 seconds)
// * timespec structure, 1 nanosecond resolution (10^-9 seconds)
// Note that PyTime_t is now specified as int64_t, in nanoseconds.
// (If we need to change this, we'll need new public API with new names.)
// Previously, PyTime_t was configurable (in theory); some comments and code
// might still allude to that.
//
// Integer overflows are detected and raise OverflowError. Conversion to a
// resolution worse than 1 nanosecond is rounded correctly with the requested
// rounding mode. There are 4 rounding modes: floor (towards -inf), ceiling
// (towards +inf), half even and up (away from zero).
// resolution larger than 1 nanosecond is rounded correctly with the requested
// rounding mode. Available rounding modes:
//
// Some functions clamp the result in the range [_PyTime_MIN; _PyTime_MAX], so
// the caller doesn't have to handle errors and doesn't need to hold the GIL.
// For example, _PyTime_Add(t1, t2) computes t1+t2 and clamp the result on
// overflow.
// * Round towards minus infinity (-inf). For example, used to read a clock.
// * Round towards infinity (+inf). For example, used for timeout to wait "at
// least" N seconds.
// * Round to nearest with ties going to nearest even integer. For example, used
// to round from a Python float.
// * Round away from zero. For example, used for timeout.
//
// Some functions clamp the result in the range [PyTime_MIN; PyTime_MAX]. The
// caller doesn't have to handle errors and so doesn't need to hold the GIL to
// handle exceptions. For example, _PyTime_Add(t1, t2) computes t1+t2 and
// clamps the result on overflow.
//
// Clocks:
//
@ -36,10 +41,11 @@
// * Monotonic clock
// * Performance counter
//
// Operations like (t * k / q) with integers are implemented in a way to reduce
// the risk of integer overflow. Such operation is used to convert a clock
// value expressed in ticks with a frequency to _PyTime_t, like
// QueryPerformanceCounter() with QueryPerformanceFrequency().
// Internally, operations like (t * k / q) with integers are implemented in a
// way to reduce the risk of integer overflow. Such operation is used to convert a
// clock value expressed in ticks with a frequency to PyTime_t, like
// QueryPerformanceCounter() with QueryPerformanceFrequency() on Windows.
#ifndef Py_INTERNAL_TIME_H
#define Py_INTERNAL_TIME_H
@ -56,14 +62,7 @@ extern "C" {
struct timeval;
#endif
// _PyTime_t: Python timestamp with subsecond precision. It can be used to
// store a duration, and so indirectly a date (related to another date, like
// UNIX epoch).
typedef int64_t _PyTime_t;
// _PyTime_MIN nanoseconds is around -292.3 years
#define _PyTime_MIN INT64_MIN
// _PyTime_MAX nanoseconds is around +292.3 years
#define _PyTime_MAX INT64_MAX
typedef PyTime_t _PyTime_t;
#define _SIZEOF_PYTIME_T 8
typedef enum {
@ -147,7 +146,7 @@ PyAPI_FUNC(_PyTime_t) _PyTime_FromSecondsDouble(double seconds, _PyTime_round_t
PyAPI_FUNC(_PyTime_t) _PyTime_FromNanoseconds(_PyTime_t ns);
// Create a timestamp from a number of microseconds.
// Clamp to [_PyTime_MIN; _PyTime_MAX] on overflow.
// Clamp to [PyTime_MIN; PyTime_MAX] on overflow.
extern _PyTime_t _PyTime_FromMicrosecondsClamp(_PyTime_t us);
// Create a timestamp from nanoseconds (Python int).
@ -169,10 +168,6 @@ PyAPI_FUNC(int) _PyTime_FromMillisecondsObject(_PyTime_t *t,
PyObject *obj,
_PyTime_round_t round);
// Convert a timestamp to a number of seconds as a C double.
// Export for '_socket' shared extension.
PyAPI_FUNC(double) _PyTime_AsSecondsDouble(_PyTime_t t);
// Convert timestamp to a number of milliseconds (10^-3 seconds).
// Export for '_ssl' shared extension.
PyAPI_FUNC(_PyTime_t) _PyTime_AsMilliseconds(_PyTime_t t,
@ -183,9 +178,6 @@ PyAPI_FUNC(_PyTime_t) _PyTime_AsMilliseconds(_PyTime_t t,
PyAPI_FUNC(_PyTime_t) _PyTime_AsMicroseconds(_PyTime_t t,
_PyTime_round_t round);
// Convert timestamp to a number of nanoseconds (10^-9 seconds).
extern _PyTime_t _PyTime_AsNanoseconds(_PyTime_t t);
#ifdef MS_WINDOWS
// Convert timestamp to a number of 100 nanoseconds (10^-7 seconds).
extern _PyTime_t _PyTime_As100Nanoseconds(_PyTime_t t,
@ -250,7 +242,7 @@ PyAPI_FUNC(void) _PyTime_AsTimespec_clamp(_PyTime_t t, struct timespec *ts);
#endif
// Compute t1 + t2. Clamp to [_PyTime_MIN; _PyTime_MAX] on overflow.
// Compute t1 + t2. Clamp to [PyTime_MIN; PyTime_MAX] on overflow.
extern _PyTime_t _PyTime_Add(_PyTime_t t1, _PyTime_t t2);
// Structure used by time.get_clock_info()
@ -267,7 +259,8 @@ typedef struct {
// On integer overflow, silently ignore the overflow and clamp the clock to
// [_PyTime_MIN; _PyTime_MAX].
//
// Use _PyTime_GetSystemClockWithInfo() to check for failure.
// Use _PyTime_GetSystemClockWithInfo or the public PyTime_Time() to check
// for failure.
// Export for '_random' shared extension.
PyAPI_FUNC(_PyTime_t) _PyTime_GetSystemClock(void);
@ -287,7 +280,8 @@ extern int _PyTime_GetSystemClockWithInfo(
// On integer overflow, silently ignore the overflow and clamp the clock to
// [_PyTime_MIN; _PyTime_MAX].
//
// Use _PyTime_GetMonotonicClockWithInfo() to check for failure.
// Use _PyTime_GetMonotonicClockWithInfo or the public PyTime_Monotonic()
// to check for failure.
// Export for '_random' shared extension.
PyAPI_FUNC(_PyTime_t) _PyTime_GetMonotonicClock(void);
@ -322,10 +316,12 @@ PyAPI_FUNC(int) _PyTime_gmtime(time_t t, struct tm *tm);
// On integer overflow, silently ignore the overflow and clamp the clock to
// [_PyTime_MIN; _PyTime_MAX].
//
// Use _PyTime_GetPerfCounterWithInfo() to check for failure.
// Use _PyTime_GetPerfCounterWithInfo() or the public PyTime_PerfCounter
// to check for failure.
// Export for '_lsprof' shared extension.
PyAPI_FUNC(_PyTime_t) _PyTime_GetPerfCounter(void);
// Get the performance counter: clock with the highest available resolution to
// measure a short duration.
//
@ -336,6 +332,13 @@ extern int _PyTime_GetPerfCounterWithInfo(
_PyTime_t *t,
_Py_clock_info_t *info);
// Alias for backward compatibility
#define _PyTime_MIN PyTime_MIN
#define _PyTime_MAX PyTime_MAX
#define _PyTime_AsSecondsDouble PyTime_AsSecondsDouble
// --- _PyDeadline -----------------------------------------------------------
// Create a deadline.
// Pseudo code: _PyTime_GetMonotonicClock() + timeout.

View File

@ -0,0 +1,71 @@
import time
import unittest
from test.support import import_helper
_testcapi = import_helper.import_module('_testcapi')
PyTime_MIN = _testcapi.PyTime_MIN
PyTime_MAX = _testcapi.PyTime_MAX
SEC_TO_NS = 10 ** 9
DAY_TO_SEC = (24 * 60 * 60)
# Worst clock resolution: maximum delta between two clock reads.
CLOCK_RES = 0.050
class CAPITest(unittest.TestCase):
def test_min_max(self):
# PyTime_t is just int64_t
self.assertEqual(PyTime_MIN, -2**63)
self.assertEqual(PyTime_MAX, 2**63 - 1)
def check_clock(self, c_func, py_func):
t1 = c_func()
t2 = py_func()
self.assertAlmostEqual(t1, t2, delta=CLOCK_RES)
def test_assecondsdouble(self):
# Test PyTime_AsSecondsDouble()
def ns_to_sec(ns):
if abs(ns) % SEC_TO_NS == 0:
return float(ns // SEC_TO_NS)
else:
return float(ns) / SEC_TO_NS
seconds = (
0,
1,
DAY_TO_SEC,
365 * DAY_TO_SEC,
)
values = {
PyTime_MIN,
PyTime_MIN + 1,
PyTime_MAX - 1,
PyTime_MAX,
}
for second in seconds:
ns = second * SEC_TO_NS
values.add(ns)
# test nanosecond before/after to test rounding
values.add(ns - 1)
values.add(ns + 1)
for ns in list(values):
if (-ns) > PyTime_MAX:
continue
values.add(-ns)
for ns in sorted(values):
with self.subTest(ns=ns):
self.assertEqual(_testcapi.PyTime_AsSecondsDouble(ns),
ns_to_sec(ns))
def test_monotonic(self):
# Test PyTime_Monotonic()
self.check_clock(_testcapi.PyTime_Monotonic, time.monotonic)
def test_perf_counter(self):
# Test PyTime_PerfCounter()
self.check_clock(_testcapi.PyTime_PerfCounter, time.perf_counter)
def test_time(self):
# Test PyTime_time()
self.check_clock(_testcapi.PyTime_Time, time.time)

View File

@ -43,8 +43,8 @@ class _PyTime(enum.IntEnum):
ROUND_UP = 3
# _PyTime_t is int64_t
_PyTime_MIN = -2 ** 63
_PyTime_MAX = 2 ** 63 - 1
PyTime_MIN = -2 ** 63
PyTime_MAX = 2 ** 63 - 1
# Rounding modes supported by PyTime
ROUNDING_MODES = (
@ -934,7 +934,7 @@ class TestCPyTime(CPyTimeTestCase, unittest.TestCase):
_PyTime_FromSecondsObject(float('nan'), time_rnd)
def test_AsSecondsDouble(self):
from _testinternalcapi import _PyTime_AsSecondsDouble
from _testcapi import PyTime_AsSecondsDouble
def float_converter(ns):
if abs(ns) % SEC_TO_NS == 0:
@ -942,15 +942,10 @@ class TestCPyTime(CPyTimeTestCase, unittest.TestCase):
else:
return float(ns) / SEC_TO_NS
self.check_int_rounding(lambda ns, rnd: _PyTime_AsSecondsDouble(ns),
self.check_int_rounding(lambda ns, rnd: PyTime_AsSecondsDouble(ns),
float_converter,
NS_TO_SEC)
# test nan
for time_rnd, _ in ROUNDING_MODES:
with self.assertRaises(TypeError):
_PyTime_AsSecondsDouble(float('nan'))
def create_decimal_converter(self, denominator):
denom = decimal.Decimal(denominator)
@ -1009,7 +1004,7 @@ class TestCPyTime(CPyTimeTestCase, unittest.TestCase):
tv_sec_max = self.time_t_max
tv_sec_min = self.time_t_min
for t in (_PyTime_MIN, _PyTime_MAX):
for t in (PyTime_MIN, PyTime_MAX):
ts = _PyTime_AsTimeval_clamp(t, _PyTime.ROUND_CEILING)
with decimal.localcontext() as context:
context.rounding = decimal.ROUND_CEILING
@ -1028,7 +1023,7 @@ class TestCPyTime(CPyTimeTestCase, unittest.TestCase):
def test_AsTimespec_clamp(self):
from _testinternalcapi import _PyTime_AsTimespec_clamp
for t in (_PyTime_MIN, _PyTime_MAX):
for t in (PyTime_MIN, PyTime_MAX):
ts = _PyTime_AsTimespec_clamp(t)
tv_sec, tv_nsec = divmod(t, NS_TO_SEC)
if self.time_t_max < tv_sec:

View File

@ -0,0 +1,9 @@
Add PyTime C API:
* :c:type:`PyTime_t` type.
* :c:var:`PyTime_MIN` and :c:var:`PyTime_MAX` constants.
* :c:func:`PyTime_AsSecondsDouble`,
:c:func:`PyTime_Monotonic`, :c:func:`PyTime_PerfCounter`, and
:c:func:`PyTime_Time` functions.
Patch by Victor Stinner.

View File

@ -162,7 +162,7 @@
@MODULE__XXTESTFUZZ_TRUE@_xxtestfuzz _xxtestfuzz/_xxtestfuzz.c _xxtestfuzz/fuzzer.c
@MODULE__TESTBUFFER_TRUE@_testbuffer _testbuffer.c
@MODULE__TESTINTERNALCAPI_TRUE@_testinternalcapi _testinternalcapi.c _testinternalcapi/test_lock.c _testinternalcapi/pytime.c _testinternalcapi/set.c _testinternalcapi/test_critical_sections.c
@MODULE__TESTCAPI_TRUE@_testcapi _testcapimodule.c _testcapi/vectorcall.c _testcapi/vectorcall_limited.c _testcapi/heaptype.c _testcapi/abstract.c _testcapi/bytearray.c _testcapi/bytes.c _testcapi/unicode.c _testcapi/dict.c _testcapi/set.c _testcapi/list.c _testcapi/tuple.c _testcapi/getargs.c _testcapi/datetime.c _testcapi/docstring.c _testcapi/mem.c _testcapi/watchers.c _testcapi/long.c _testcapi/float.c _testcapi/complex.c _testcapi/numbers.c _testcapi/structmember.c _testcapi/exceptions.c _testcapi/code.c _testcapi/buffer.c _testcapi/pyatomic.c _testcapi/pyos.c _testcapi/file.c _testcapi/codec.c _testcapi/immortal.c _testcapi/heaptype_relative.c _testcapi/gc.c _testcapi/sys.c _testcapi/hash.c
@MODULE__TESTCAPI_TRUE@_testcapi _testcapimodule.c _testcapi/vectorcall.c _testcapi/vectorcall_limited.c _testcapi/heaptype.c _testcapi/abstract.c _testcapi/bytearray.c _testcapi/bytes.c _testcapi/unicode.c _testcapi/dict.c _testcapi/set.c _testcapi/list.c _testcapi/tuple.c _testcapi/getargs.c _testcapi/datetime.c _testcapi/docstring.c _testcapi/mem.c _testcapi/watchers.c _testcapi/long.c _testcapi/float.c _testcapi/complex.c _testcapi/numbers.c _testcapi/structmember.c _testcapi/exceptions.c _testcapi/code.c _testcapi/buffer.c _testcapi/pyatomic.c _testcapi/pyos.c _testcapi/file.c _testcapi/codec.c _testcapi/immortal.c _testcapi/heaptype_relative.c _testcapi/gc.c _testcapi/sys.c _testcapi/hash.c _testcapi/time.c
@MODULE__TESTCLINIC_TRUE@_testclinic _testclinic.c
@MODULE__TESTCLINIC_LIMITED_TRUE@_testclinic_limited _testclinic_limited.c

View File

@ -262,7 +262,7 @@ random_seed_urandom(RandomObject *self)
static void
random_seed_time_pid(RandomObject *self)
{
_PyTime_t now;
PyTime_t now;
uint32_t key[5];
now = _PyTime_GetSystemClock();

View File

@ -59,6 +59,7 @@ int _PyTestCapi_Init_Immortal(PyObject *module);
int _PyTestCapi_Init_GC(PyObject *module);
int _PyTestCapi_Init_Sys(PyObject *module);
int _PyTestCapi_Init_Hash(PyObject *module);
int _PyTestCapi_Init_Time(PyObject *module);
int _PyTestCapi_Init_VectorcallLimited(PyObject *module);
int _PyTestCapi_Init_HeaptypeRelative(PyObject *module);

105
Modules/_testcapi/time.c Normal file
View File

@ -0,0 +1,105 @@
#include "parts.h"
static int
pytime_from_nanoseconds(PyTime_t *tp, PyObject *obj)
{
if (!PyLong_Check(obj)) {
PyErr_Format(PyExc_TypeError, "expect int, got %s",
Py_TYPE(obj)->tp_name);
return -1;
}
long long nsec = PyLong_AsLongLong(obj);
if (nsec == -1 && PyErr_Occurred()) {
return -1;
}
Py_BUILD_ASSERT(sizeof(long long) == sizeof(PyTime_t));
*tp = (PyTime_t)nsec;
return 0;
}
static PyObject *
test_pytime_assecondsdouble(PyObject *Py_UNUSED(self), PyObject *args)
{
PyObject *obj;
if (!PyArg_ParseTuple(args, "O", &obj)) {
return NULL;
}
PyTime_t ts;
if (pytime_from_nanoseconds(&ts, obj) < 0) {
return NULL;
}
double d = PyTime_AsSecondsDouble(ts);
return PyFloat_FromDouble(d);
}
static PyObject*
pytime_as_float(PyTime_t t)
{
return PyFloat_FromDouble(PyTime_AsSecondsDouble(t));
}
static PyObject*
test_pytime_monotonic(PyObject *Py_UNUSED(self), PyObject *Py_UNUSED(args))
{
PyTime_t t;
if (PyTime_Monotonic(&t) < 0) {
return NULL;
}
return pytime_as_float(t);
}
static PyObject*
test_pytime_perf_counter(PyObject *Py_UNUSED(self), PyObject *Py_UNUSED(args))
{
PyTime_t t;
if (PyTime_PerfCounter(&t) < 0) {
return NULL;
}
return pytime_as_float(t);
}
static PyObject*
test_pytime_time(PyObject *Py_UNUSED(self), PyObject *Py_UNUSED(args))
{
PyTime_t t;
if (PyTime_Time(&t) < 0) {
printf("ERR! %d\n", (int)t);
return NULL;
}
printf("... %d\n", (int)t);
return pytime_as_float(t);
}
static PyMethodDef test_methods[] = {
{"PyTime_AsSecondsDouble", test_pytime_assecondsdouble, METH_VARARGS},
{"PyTime_Monotonic", test_pytime_monotonic, METH_NOARGS},
{"PyTime_PerfCounter", test_pytime_perf_counter, METH_NOARGS},
{"PyTime_Time", test_pytime_time, METH_NOARGS},
{NULL},
};
int
_PyTestCapi_Init_Time(PyObject *m)
{
if (PyModule_AddFunctions(m, test_methods) < 0) {
return -1;
}
Py_BUILD_ASSERT(sizeof(long long) == sizeof(PyTime_t));
if (PyModule_AddObject(m, "PyTime_MIN", PyLong_FromLongLong(PyTime_MIN)) < 0) {
return 1;
}
if (PyModule_AddObject(m, "PyTime_MAX", PyLong_FromLongLong(PyTime_MAX)) < 0) {
return 1;
}
return 0;
}

View File

@ -4107,6 +4107,9 @@ PyInit__testcapi(void)
if (_PyTestCapi_Init_Hash(m) < 0) {
return NULL;
}
if (_PyTestCapi_Init_Time(m) < 0) {
return NULL;
}
PyState_AddModule(m, &_testcapimodule);
return m;

View File

@ -52,21 +52,6 @@ test_pytime_fromsecondsobject(PyObject *self, PyObject *args)
return _PyTime_AsNanosecondsObject(ts);
}
static PyObject *
test_pytime_assecondsdouble(PyObject *self, PyObject *args)
{
PyObject *obj;
if (!PyArg_ParseTuple(args, "O", &obj)) {
return NULL;
}
_PyTime_t ts;
if (_PyTime_FromNanosecondsObject(&ts, obj) < 0) {
return NULL;
}
double d = _PyTime_AsSecondsDouble(ts);
return PyFloat_FromDouble(d);
}
static PyObject *
test_PyTime_AsTimeval(PyObject *self, PyObject *args)
{
@ -254,7 +239,6 @@ test_pytime_object_to_timespec(PyObject *self, PyObject *args)
static PyMethodDef TestMethods[] = {
{"_PyTime_AsMicroseconds", test_PyTime_AsMicroseconds, METH_VARARGS},
{"_PyTime_AsMilliseconds", test_PyTime_AsMilliseconds, METH_VARARGS},
{"_PyTime_AsSecondsDouble", test_pytime_assecondsdouble, METH_VARARGS},
#ifdef HAVE_CLOCK_GETTIME
{"_PyTime_AsTimespec", test_PyTime_AsTimespec, METH_VARARGS},
{"_PyTime_AsTimespec_clamp", test_PyTime_AsTimespec_clamp, METH_VARARGS},

View File

@ -125,6 +125,7 @@
<ClCompile Include="..\Modules\_testcapi\codec.c" />
<ClCompile Include="..\Modules\_testcapi\sys.c" />
<ClCompile Include="..\Modules\_testcapi\hash.c" />
<ClCompile Include="..\Modules\_testcapi\time.c" />
<ClCompile Include="..\Modules\_testcapi\immortal.c" />
<ClCompile Include="..\Modules\_testcapi\gc.c" />
</ItemGroup>

View File

@ -105,6 +105,9 @@
<ClCompile Include="..\Modules\_testcapi\hash.c">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="..\Modules\_testcapi\time.c">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="..\Modules\_testcapi\gc.c">
<Filter>Source Files</Filter>
</ClCompile>

View File

@ -50,7 +50,7 @@
# error "time_t is not a two's complement integer type"
#endif
#if _PyTime_MIN + _PyTime_MAX != -1
#if PyTime_MIN + PyTime_MAX != -1
# error "_PyTime_t is not a two's complement integer type"
#endif
@ -124,16 +124,16 @@ pytime_as_nanoseconds(_PyTime_t t)
}
// Compute t1 + t2. Clamp to [_PyTime_MIN; _PyTime_MAX] on overflow.
// Compute t1 + t2. Clamp to [PyTime_MIN; PyTime_MAX] on overflow.
static inline int
pytime_add(_PyTime_t *t1, _PyTime_t t2)
{
if (t2 > 0 && *t1 > _PyTime_MAX - t2) {
*t1 = _PyTime_MAX;
if (t2 > 0 && *t1 > PyTime_MAX - t2) {
*t1 = PyTime_MAX;
return -1;
}
else if (t2 < 0 && *t1 < _PyTime_MIN - t2) {
*t1 = _PyTime_MIN;
else if (t2 < 0 && *t1 < PyTime_MIN - t2) {
*t1 = PyTime_MIN;
return -1;
}
else {
@ -156,7 +156,7 @@ pytime_mul_check_overflow(_PyTime_t a, _PyTime_t b)
{
if (b != 0) {
assert(b > 0);
return ((a < _PyTime_MIN / b) || (_PyTime_MAX / b < a));
return ((a < PyTime_MIN / b) || (PyTime_MAX / b < a));
}
else {
return 0;
@ -164,13 +164,13 @@ pytime_mul_check_overflow(_PyTime_t a, _PyTime_t b)
}
// Compute t * k. Clamp to [_PyTime_MIN; _PyTime_MAX] on overflow.
// Compute t * k. Clamp to [PyTime_MIN; PyTime_MAX] on overflow.
static inline int
pytime_mul(_PyTime_t *t, _PyTime_t k)
{
assert(k >= 0);
if (pytime_mul_check_overflow(*t, k)) {
*t = (*t >= 0) ? _PyTime_MAX : _PyTime_MIN;
*t = (*t >= 0) ? PyTime_MAX : PyTime_MIN;
return -1;
}
else {
@ -180,7 +180,7 @@ pytime_mul(_PyTime_t *t, _PyTime_t k)
}
// Compute t * k. Clamp to [_PyTime_MIN; _PyTime_MAX] on overflow.
// Compute t * k. Clamp to [PyTime_MIN; PyTime_MAX] on overflow.
static inline _PyTime_t
_PyTime_Mul(_PyTime_t t, _PyTime_t k)
{
@ -459,12 +459,12 @@ _PyTime_FromSeconds(int seconds)
/* ensure that integer overflow cannot happen, int type should have 32
bits, whereas _PyTime_t type has at least 64 bits (SEC_TO_NS takes 30
bits). */
static_assert(INT_MAX <= _PyTime_MAX / SEC_TO_NS, "_PyTime_t overflow");
static_assert(INT_MIN >= _PyTime_MIN / SEC_TO_NS, "_PyTime_t underflow");
static_assert(INT_MAX <= PyTime_MAX / SEC_TO_NS, "_PyTime_t overflow");
static_assert(INT_MIN >= PyTime_MIN / SEC_TO_NS, "_PyTime_t underflow");
_PyTime_t t = (_PyTime_t)seconds;
assert((t >= 0 && t <= _PyTime_MAX / SEC_TO_NS)
|| (t < 0 && t >= _PyTime_MIN / SEC_TO_NS));
assert((t >= 0 && t <= PyTime_MAX / SEC_TO_NS)
|| (t < 0 && t >= PyTime_MIN / SEC_TO_NS));
t *= SEC_TO_NS;
return pytime_from_nanoseconds(t);
}
@ -587,7 +587,7 @@ pytime_from_double(_PyTime_t *tp, double value, _PyTime_round_t round,
d = pytime_round(d, round);
/* See comments in pytime_double_to_denominator */
if (!((double)_PyTime_MIN <= d && d < -(double)_PyTime_MIN)) {
if (!((double)PyTime_MIN <= d && d < -(double)PyTime_MIN)) {
pytime_time_t_overflow();
return -1;
}
@ -649,12 +649,12 @@ _PyTime_FromMillisecondsObject(_PyTime_t *tp, PyObject *obj, _PyTime_round_t rou
double
_PyTime_AsSecondsDouble(_PyTime_t t)
PyTime_AsSecondsDouble(PyTime_t t)
{
/* volatile avoids optimization changing how numbers are rounded */
volatile double d;
_PyTime_t ns = pytime_as_nanoseconds(t);
PyTime_t ns = pytime_as_nanoseconds(t);
if (ns % SEC_TO_NS == 0) {
/* Divide using integers to avoid rounding issues on the integer part.
1e-9 cannot be stored exactly in IEEE 64-bit. */
@ -695,7 +695,7 @@ pytime_divide_round_up(const _PyTime_t t, const _PyTime_t k)
assert(k > 1);
if (t >= 0) {
// Don't use (t + k - 1) / k to avoid integer overflow
// if t is equal to _PyTime_MAX
// if t is equal to PyTime_MAX
_PyTime_t q = t / k;
if (t % k) {
q += 1;
@ -704,7 +704,7 @@ pytime_divide_round_up(const _PyTime_t t, const _PyTime_t k)
}
else {
// Don't use (t - (k - 1)) / k to avoid integer overflow
// if t is equals to _PyTime_MIN.
// if t is equals to PyTime_MIN.
_PyTime_t q = t / k;
if (t % k) {
q -= 1;
@ -759,7 +759,7 @@ pytime_divide(const _PyTime_t t, const _PyTime_t k,
// Compute (t / k, t % k) in (pq, pr).
// Make sure that 0 <= pr < k.
// Return 0 on success.
// Return -1 on underflow and store (_PyTime_MIN, 0) in (pq, pr).
// Return -1 on underflow and store (PyTime_MIN, 0) in (pq, pr).
static int
pytime_divmod(const _PyTime_t t, const _PyTime_t k,
_PyTime_t *pq, _PyTime_t *pr)
@ -768,8 +768,8 @@ pytime_divmod(const _PyTime_t t, const _PyTime_t k,
_PyTime_t q = t / k;
_PyTime_t r = t % k;
if (r < 0) {
if (q == _PyTime_MIN) {
*pq = _PyTime_MIN;
if (q == PyTime_MIN) {
*pq = PyTime_MIN;
*pr = 0;
return -1;
}
@ -784,13 +784,6 @@ pytime_divmod(const _PyTime_t t, const _PyTime_t k,
}
_PyTime_t
_PyTime_AsNanoseconds(_PyTime_t t)
{
return pytime_as_nanoseconds(t);
}
#ifdef MS_WINDOWS
_PyTime_t
_PyTime_As100Nanoseconds(_PyTime_t t, _PyTime_round_t round)
@ -926,6 +919,7 @@ _PyTime_AsTimespec(_PyTime_t t, struct timespec *ts)
#endif
// N.B. If raise_exc=0, this may be called without the GIL.
static int
py_get_system_clock(_PyTime_t *tp, _Py_clock_info_t *info, int raise_exc)
{
@ -1050,6 +1044,18 @@ _PyTime_GetSystemClock(void)
}
int
PyTime_Time(PyTime_t *result)
{
if (py_get_system_clock(result, NULL, 1) < 0) {
// If clock_gettime(CLOCK_REALTIME) or gettimeofday() fails:
// silently ignore the failure and return 0.
*result = 0;
return -1;
}
return 1;
}
int
_PyTime_GetSystemClockWithInfo(_PyTime_t *t, _Py_clock_info_t *info)
{
@ -1092,6 +1098,7 @@ py_mach_timebase_info(_PyTimeFraction *base, int raise)
#endif
// N.B. If raise_exc=0, this may be called without the GIL.
static int
py_get_monotonic_clock(_PyTime_t *tp, _Py_clock_info_t *info, int raise_exc)
{
@ -1102,13 +1109,13 @@ py_get_monotonic_clock(_PyTime_t *tp, _Py_clock_info_t *info, int raise_exc)
static_assert(sizeof(ticks) <= sizeof(_PyTime_t),
"ULONGLONG is larger than _PyTime_t");
_PyTime_t t;
if (ticks <= (ULONGLONG)_PyTime_MAX) {
if (ticks <= (ULONGLONG)PyTime_MAX) {
t = (_PyTime_t)ticks;
}
else {
// GetTickCount64() maximum is larger than _PyTime_t maximum:
// ULONGLONG is unsigned, whereas _PyTime_t is signed.
t = _PyTime_MAX;
t = PyTime_MAX;
}
int res = pytime_mul(&t, MS_TO_NS);
@ -1151,7 +1158,7 @@ py_get_monotonic_clock(_PyTime_t *tp, _Py_clock_info_t *info, int raise_exc)
uint64_t uticks = mach_absolute_time();
// unsigned => signed
assert(uticks <= (uint64_t)_PyTime_MAX);
assert(uticks <= (uint64_t)PyTime_MAX);
_PyTime_t ticks = (_PyTime_t)uticks;
_PyTime_t ns = _PyTimeFraction_Mul(ticks, &base);
@ -1229,6 +1236,17 @@ _PyTime_GetMonotonicClock(void)
}
int
PyTime_Monotonic(PyTime_t *result)
{
if (py_get_monotonic_clock(result, NULL, 1) < 0) {
*result = 0;
return -1;
}
return 0;
}
int
_PyTime_GetMonotonicClockWithInfo(_PyTime_t *tp, _Py_clock_info_t *info)
{
@ -1268,6 +1286,7 @@ py_win_perf_counter_frequency(_PyTimeFraction *base, int raise)
}
// N.B. If raise_exc=0, this may be called without the GIL.
static int
py_get_win_perf_counter(_PyTime_t *tp, _Py_clock_info_t *info, int raise_exc)
{
@ -1335,6 +1354,25 @@ _PyTime_GetPerfCounter(void)
}
int
PyTime_PerfCounter(PyTime_t *result)
{
int res;
#ifdef MS_WINDOWS
res = py_get_win_perf_counter(result, NULL, 1);
#else
res = py_get_monotonic_clock(result, NULL, 1);
#endif
if (res < 0) {
// If py_win_perf_counter_frequency() or py_get_monotonic_clock()
// fails: silently ignore the failure and return 0.
*result = 0;
return -1;
}
return 0;
}
int
_PyTime_localtime(time_t t, struct tm *tm)
{