part itself is longer than maxlen, and we aren't already splitting on
whitespace, then we recursively split the part on whitespace and
append that to the this list.
preserve spaces in the encoded/unencoded word boundaries. RFC 2047 is
ambiguous here, but most people expect the space to be preserved.
Really closes SF bug # 640110.
_split(): New implementation of ASCII line splitting which should do a
better job and not be subject to the various weird artifacts (bugs)
reported. This should also do a better job of higher-level syntactic
splits by trying first to split on semis, then commas, then
whitespace.
Use a Timbot-ly binary search for optimal non-ASCII split points for
better packing of header lines. This also lets us remove one
recursion call. Don't pass in firstline, but instead pass in the
actual line length we're shooting for. Also pass in the list of split
characters.
encode(): Pass in the list of split characters so applications can
have some control over what "higher level syntactic breaks" are.
Also,
decode_header(): Transform binascii.Errors which can occur when
decoding a base64 RFC 2047 header with bogus data, into an
email.Errors.HeaderParseError. Closes SF bug #696712.
_handle_multipart(): Ensure that if the preamble exists but does not
end in a newline, a newline is still added. Without this, the
boundary separator will end up on the preamble line, breaking the MIME
structure.
_make_boundary(): Handle differences in the decimal point character
based on the locale.
Charset: Alias __repr__ to __str__ for debugging.
header_encode(): When calling quopriMIME.header_encode(), set
maxlinelen=None so that the lower level function doesn't (also) try to
wrap/fold the line.
_max_append(): Change the comparison so that the new string is
concatenated if it's less than or equal to the max length.
header_encode(): Allow for maxlinelen == None to mean, don't do any
line splitting. This is because this module is mostly used by higher
level abstractions (Header.py) which already ensures line lengths. We
do this in a cheapo way by setting the max_encoding to some insanely
<100k wink> large number.
because the test file, msg_26.txt which has \r\n line endings, was
getting munged by cvs, which knows to do line ending conversions for
text files. But we want \r\n to be preserved on all platforms, so we
cvs admin'd the file to be -kb (binary), which means we have to open
the file in binary mode to preserve these line ends. Hopefully this
will be the end of the thrashing on this issue (but probably not).
Test passes on *nix now, and Tim confirms it passes on Windows. We'll
leave it to Jack to test MacOS.
is passed straight through to the unicode() and ustr.encode() calls.
I think it's the best we can do to address the UnicodeErrors in badly
encoded headers such as is described in SF bug #648119.
file, needed because some binary distros (read RPMs) don't include the
test module in their standard Python package. This eliminates an
external dependency and closes SF bug # 650441.
binary distros (read RPMs) don't include the test module in their
standard Python package. This eliminates an external dependency and
closes SF bug # 650441.
where in lax parsing, the first non-header line after a header block
(e.g. the first line not containing a colon, and not a continuation),
can be treated as the first body line, even without the RFC mandated
blank line separator.
rfc822 had this behavior, and I vaguely remember problems with this,
but can't remember details. In any event, all the tests still pass,
so I guess we'll find out. ;/
This patch works by returning the non-header, non-continuation line
from _parseheader() and using that as the first header line prepended
to fp.read() if given. It's usually None.
We use this approach instead of trying to seek/tell the file-like
object.
multipart/digest isn't a message/rfc822. This is legal, but counter
to recommended practice in RFC 2046, $5.1.5.
The fix is to look at the content type after setting the default
content type. If the maintype is then message or multipart, attach
the parsed subobject, otherwise use set_payload() to set the data of
the other object.
Ben. If s is a byte string, make sure it can be converted to unicode
with the input codec, and from unicode with the output codec, or raise
a UnicodeError exception early. Skip this test (and the unicode->byte
string conversion) when the charset is our faux 8bit raw charset.
must be a Charset instance, not a string. The bug here was that
self._charset wasn't being converted to a Charset instance so later
.append() calls which used the default charset would break.
_split(): If the charset of the chunk is '8bit', return the chunk
unchanged. We can't safely split it, so this is the avenue of least
harm.
8-bit data, we cannot split it safely, so return the original string
unchanged.
_is8bitstring(): Helper function which returns True when we have a
byte string that contains non-ascii characters (i.e. mysterious 8-bit
data).
Also, it fixes a really egregious error in Header.encode() (really
in Header._encode_chunks()) that could cause a header to grow and
grow each time encode() was called if output_codec was different
from input_codec.
Also, fix a typo.