The free-threaded GC uses mimallocs segment thread IDs to restore
the overwritten `ob_tid` thread ids in PyObjects. For that reason, it's
important that PyObjects and mimalloc use the same identifiers.
These are intended to be used in places where atomics are required in
free-threaded builds but not in the default build. We don't want to
introduce the potential performance overhead of an atomic operation in the
default build.
For the most part, these changes make is substantially easier to backport subinterpreter-related code to 3.12, especially the related modules (e.g. _xxsubinterpreters). The main motivation is to support releasing a PyPI package with the 3.13 capabilities compiled for 3.12.
A lot of the changes here involve either hiding details behind macros/functions or splitting up some files.
We add _winapi.BatchedWaitForMultipleObjects to wait for larger numbers of handles.
This is an internal module, hence undocumented, and should be used with caution.
Check the docstring for info before using BatchedWaitForMultipleObjects.
Biased reference counting maintains two refcount fields in each object:
`ob_ref_local` and `ob_ref_shared`. The true refcount is the sum of these two
fields. In some cases, when refcounting operations are split across threads,
the ob_ref_shared field can be negative (although the total refcount must be
at least zero). In this case, the thread that decremented the refcount
requests that the owning thread give up ownership and merge the refcount
fields.
Starts adding thread safety to dict objects.
Use @critical_section for APIs which are exposed via argument clinic and don't directly correlate with a public C API which needs to acquire the lock
Use a _lock_held suffix for keeping changes to complicated functions simple and just wrapping them with a critical section
Acquire and release the lock in an existing function where it won't be overly disruptive to the existing logic
This marks dead ThreadHandles as non-joinable earlier in
`PyOS_AfterFork_Child()` before we execute any Python code. The handles
are stored in a global linked list in `_PyRuntimeState` because `fork()`
affects the entire process.
Add optional 'filter' parameter to iterdump() that allows a "LIKE"
pattern for filtering database objects to dump.
Co-authored-by: Erlend E. Aasland <erlend@python.org>
* gh-112529: Remove PyGC_Head from object pre-header in free-threaded build
This avoids allocating space for PyGC_Head in the free-threaded build.
The GC implementation for free-threaded CPython does not use the
PyGC_Head structure.
* The trashcan mechanism uses the `ob_tid` field instead of `_gc_prev`
in the free-threaded build.
* The GDB libpython.py file now determines the offset of the managed
dict field based on whether the running process is a free-threaded
build. Those are identified by the `ob_ref_local` field in PyObject.
* Fixes `_PySys_GetSizeOf()` which incorrectly incorrectly included the
size of `PyGC_Head` in the size of static `PyTypeObject`.
Add an option (--enable-experimental-jit for configure-based builds
or --experimental-jit for PCbuild-based ones) to build an
*experimental* just-in-time compiler, based on copy-and-patch (https://fredrikbk.com/publications/copy-and-patch.pdf).
See Tools/jit/README.md for more information on how to install the required build-time tooling.
For interpreters that share state with the main interpreter, this points
to the same static memory structure. For interpreters with their own
obmalloc state, it is heap allocated. Add free_obmalloc_arenas() which
will free the obmalloc arenas and radix tree structures for interpreters
with their own obmalloc state.
Co-authored-by: Eric Snow <ericsnowcurrently@gmail.com>
* gh-112529: Implement GC for free-threaded builds
This implements a mark and sweep GC for the free-threaded builds of
CPython. The implementation relies on mimalloc to find GC tracked
objects (i.e., "containers").
* Bring in a subset of biased reference counting:
https://github.com/colesbury/nogil/commit/b6b12a9a94e
The NoGIL branch has functions for attempting to do an incref on an object which may or may not be in flight. This just brings those functions over so that they will be usable from in the dict implementation to get items w/o holding a lock.
There's a handful of small simple modifications:
Adding inline to the force inline functions to avoid a warning, and switching from _Py_ALWAYS_INLINE to Py_ALWAYS_INLINE as that's available
Remove _Py_REF_LOCAL_SHIFT as it doesn't exist yet (and is currently 0 in the 3.12 nogil branch anyway)
ob_ref_shared is currently Py_ssize_t and not uint32_t, so use that
_PY_LIKELY doesn't exist, so drop it
_Py_ThreadLocal becomes _Py_IsOwnedByCurrentThread
Add '_PyInterpreterState_GET()' to _Py_IncRefTotal calls.
Co-Authored-By: Sam Gross <colesbury@gmail.com>
The `--disable-gil` builds occasionally need to pause all but one thread. Some
examples include:
* Cyclic garbage collection, where this is often called a "stop the world event"
* Before calling `fork()`, to ensure a consistent state for internal data structures
* During interpreter shutdown, to ensure that daemon threads aren't accessing Python objects
This adds the following functions to implement global and per-interpreter pauses:
* `_PyEval_StopTheWorldAll()` and `_PyEval_StartTheWorldAll()` (for the global runtime)
* `_PyEval_StopTheWorld()` and `_PyEval_StartTheWorld()` (per-interpreter)
(The function names may change.)
These functions are no-ops outside of the `--disable-gil` build.
This adds support for visiting abandoned pages in mimalloc and improves
the performance of the page visiting code. Abandoned pages contain
memory blocks from threads that have exited. At some point, they may be
later reclaimed by other threads. We still need to visit those pages in
the free-threaded GC because they contain live objects.
This also reduces the overhead of visiting mimalloc pages:
* Special cases for full, empty, and pages containing only a single
block.
* Fix free_map to use one bit instead of one byte per block.
* Use fast integer division by a constant algorithm when computing
block offset from block size and index.
* gh-112529: Use GC heaps for GC allocations in free-threaded builds
The free-threaded build's garbage collector implementation will need to
find GC objects by traversing mimalloc heaps. This hooks up the
allocation calls with the correct heaps by using a thread-local
"current_obj_heap" variable.
* Refactor out setting heap based on type
* gh-112529: Track if debug allocator is used as underlying allocator
The GC implementation for free-threaded builds will need to accurately
detect if the debug allocator is used because it affects the offset of
the Python object from the beginning of the memory allocation. The
current implementation of `_PyMem_DebugEnabled` only considers if the
debug allocator is the outer-most allocator; it doesn't handle the case
of "hooks" like tracemalloc being used on top of the debug allocator.
This change enables more accurate detection of the debug allocator by
tracking when debug hooks are enabled.
* Simplify _PyMem_DebugEnabled