#460112 by Gerhard Haering.
(With slight layout changes to conform to docstrings guidelines and to
prevent a line longer than 78 characters. Also fixed some docstrings
that Gerhard didn't touch.)
that will detect an __main__.py or __rawmain__.py in the application bundle.
This file is then exectued as the main script. We now have applets in
MachO Python!!!
The difference between __main__ and __rawmain__ is that the former gets a
complete simulated argv (so you can drop files on the applet and the script
sees them in sys.argv) while the latter skips the argv simulation and the
<option>key dialog. This keeps the AppleEvent that started the app intact,
as well as the funny "-psn_xxxx" argv[1] argument, so the script can do
with these what it wants.
tuple(i) repaired to return a true tuple when i is an instance of a
tuple subclass.
Added PyTuple_CheckExact macro.
PySequence_Tuple(): if a tuple-like object isn't exactly a tuple, it's
not safe to return the object as-is -- make a new tuple of it instead.
parameter for the return string (as unix pathnames are not limited
by the 255 char pstring limit).
Implemented the function for MachO-Python, where it returns unix pathnames.
Given an immutable type M, and an instance I of a subclass of M, the
constructor call M(I) was just returning I as-is; but it should return a
new instance of M. This fixes it for M in {int, long}. Strings, floats
and tuples remain to be done.
Added new macros PyInt_CheckExact and PyLong_CheckExact, to more easily
distinguish between "is" and "is a" (i.e., only an int passes
PyInt_CheckExact, while any sublass of int passes PyInt_Check).
Added private API function _PyLong_Copy.
Subtlety on Windows: if we change test_largefile.py to use a file
> 4GB, it still fails. A debug session suggests this is because
fseek(fp, 0, 2) refuses to seek to the end of the file when the file
is > 4GB, because it uses the SetFilePointer() in 32-bit mode.
But it only fails when we seek relative to the end of the file,
because in the other seek modes only calls to fgetpos() and fsetpos()
are made, which use Get/SetFilePointer() in 64-bit mode. Solution:
#ifdef MS_WInDOWS, replace the call to fseek(fp, ...) with a call to
_lseeki64(fileno(fp), ...). Make sure to call fflush(fp) first.
(XXX Could also replace the entire branch with a call to _lseeki64().
Would that be more efficient? Certainly less generated code.)
(XXX This needs more testing. I can't actually test that it works for
files >4GB on my Win98 machine, because the filesystem here won't let
me create files >=4GB at all. Tim should test this on his Win2K
machine.)
- use PyModule_Check() instead of PyObject_TypeCheck(), now we can.
- don't assert that the __dict__ gotten out of a module is always
a dictionary; check its type, and raise an exception if it's not.
by bbrox@bbrox.org / lionel.ulmer@free.fr.
This adds a configure check and if all goes well turns on the
PTHREAD_SCOPE_SYSTEM thread attribute for new threads.
This should remove the need to add tiny sleeps at the start of threads
to allow other threads to be scheduled.
If on Windows, we require the 'largefile' resource.
If not on Windows, we use a test that actually writes a byte beyond
the 2BG limit -- seeking alone is not sufficient, since on some
systems (e.g. Linux with glibc 2.2) the sytem call interface supports
large seek offsets but not all filesystem implementations do.
Note that on Windows, we do not use the write test: on Win2K, that
test can take a minute trying to zero all those blocks on disk, and on
Windows our code always supports large seek offsets (but again, not
all filesystems do). This may mean that on Win95, or on certain other
backward filesystems, test_largefile will *fail*.
Reported by Fredrik Lundh on python-dev.
The conversimple() code that handles Unicode arguments and converts
them to the default encoding now calls converterr() with the original
Unicode argument instead of the NULL returned by the failed encoding
attempt.
support on Linux (and Solaris, I expect) for real.
The necessary symbols are defined once and for all,
under the assumption that they won't harm elsewhere.