When executing the BUILD_LIST opcode, steal the references from the stack,
in a manner similar to the BUILD_TUPLE opcode. Implement this by offloading
the logic to a new private API, _PyList_FromArraySteal(), that works similarly
to _PyTuple_FromArraySteal().
This way, instead of performing multiple stack pointer adjustments while the
list is being initialized, the stack is adjusted only once and a fast memory
copy operation is performed in one fell swoop.
Not comprehensive, best effort warning. There are cases when threads exist on some platforms that this code cannot detect. macOS when API permissions allow and Linux with a readable /proc procfs present are the currently supported cases where a warning should show up reliably.
Starting with a DeprecationWarning for now, it is less disruptive than something like RuntimeWarning and most likely to only be seen in people's CI tests - a good place to start with this messaging.
* move _PyRuntime.global_objects.interned to _PyRuntime.cached_objects.interned_strings (and use _Py_CACHED_OBJECT())
* rename _PyRuntime.global_objects to _PyRuntime.static_objects
(This also relates to gh-96075.)
https://github.com/python/cpython/issues/90111
The Py_CLEAR(), Py_SETREF() and Py_XSETREF() macros now only evaluate
their arguments once. If an argument has side effects, these side
effects are no longer duplicated.
Use temporary variables to avoid duplicating side effects of macro
arguments. If available, use _Py_TYPEOF() to avoid type punning.
Otherwise, use memcpy() for the assignment to prevent a
miscompilation with strict aliasing caused by type punning.
Add _Py_TYPEOF() macro: __typeof__() on GCC and clang.
Add test_py_clear() and test_py_setref() unit tests to _testcapi.
* Add API to allow extensions to set callback function on creation and destruction of PyCodeObject
Co-authored-by: Ye11ow-Flash <janshah@cs.stonybrook.edu>
Convert macros to static inline functions to avoid macro pitfalls,
like duplication of side effects:
* _PyObject_SIZE()
* _PyObject_VAR_SIZE()
The result type is size_t (unsigned).
* Change _PyDict_KeysSize() and shared_keys_usable_size() return type
from signed (Py_ssize_t) to unsigned (size_t) type.
* new_values() argument type is now unsigned (size_t).
* init_inline_values() now uses size_t rather than int for the 'i'
iterator variable.
* type.__sizeof__() implementation now uses unsigned (size_t) type.
The following macros are modified to use _Py_RVALUE(), so they can no
longer be used as l-value:
* DK_LOG_SIZE()
* _PyCode_CODE()
* _PyList_ITEMS()
* _PyTuple_ITEMS()
* _Py_SLIST_HEAD()
* _Py_SLIST_ITEM_NEXT()
_PyCode_CODE() is private and other macros are part of the internal
C API.
Convert macros to static inline functions to avoid macro pitfalls,
like duplication of side effects:
* DK_ENTRIES()
* DK_UNICODE_ENTRIES()
* PyCode_GetNumFree()
* PyFloat_AS_DOUBLE()
* PyInstanceMethod_GET_FUNCTION()
* PyMemoryView_GET_BASE()
* PyMemoryView_GET_BUFFER()
* PyMethod_GET_FUNCTION()
* PyMethod_GET_SELF()
* PySet_GET_SIZE()
* _PyHeapType_GET_MEMBERS()
Changes:
* PyCode_GetNumFree() casts PyCode_GetNumFree.co_nfreevars from int
to Py_ssize_t to be future proof, and because Py_ssize_t is
commonly used in the C API.
* PyCode_GetNumFree() doesn't cast its argument: the replaced macro
already required the exact type PyCodeObject*.
* Add assertions in some functions using "CAST" macros to check
the arguments type when Python is built with assertions
(debug build).
* Remove an outdated comment in unicodeobject.h.
Newly supported interpreter definition syntax:
- `op(NAME, (input_stack_effects -- output_stack_effects)) { ... }`
- `macro(NAME) = OP1 + OP2;`
Also some other random improvements:
- Convert `WITH_EXCEPT_START` to use stack effects
- Fix lexer to balk at unrecognized characters, e.g. `@`
- Fix moved output names; support object pointers in cache
- Introduce `error()` method to print errors
- Introduce read_uint16(p) as equivalent to `*p`
Co-authored-by: Brandt Bucher <brandtbucher@gmail.com>
The ``structmember.h`` header is deprecated, though it continues to be available
and there are no plans to remove it. There are no deprecation warnings. Old code
can stay unchanged (unless the extra include and non-namespaced macros bother
you greatly). Specifically, no uses in CPython are updated -- that would just be
unnecessary churn.
The ``structmember.h`` header is deprecated, though it continues to be
available and there are no plans to remove it.
Its contents are now available just by including ``Python.h``,
with a ``Py`` prefix added if it was missing:
- `PyMemberDef`, `PyMember_GetOne` and`PyMember_SetOne`
- Type macros like `Py_T_INT`, `Py_T_DOUBLE`, etc.
(previously ``T_INT``, ``T_DOUBLE``, etc.)
- The flags `Py_READONLY` (previously ``READONLY``) and
`Py_AUDIT_READ` (previously all uppercase)
Several items are not exposed from ``Python.h``:
- `T_OBJECT` (use `Py_T_OBJECT_EX`)
- `T_NONE` (previously undocumented, and pretty quirky)
- The macro ``WRITE_RESTRICTED`` which does nothing.
- The macros ``RESTRICTED`` and ``READ_RESTRICTED``, equivalents of
`Py_AUDIT_READ`.
- In some configurations, ``<stddef.h>`` is not included from ``Python.h``.
It should be included manually when using ``offsetof()``.
The deprecated header continues to provide its original
contents under the original names.
Your old code can stay unchanged, unless the extra include and non-namespaced
macros bother you greatly.
There is discussion on the issue to rename `T_PYSSIZET` to `PY_T_SSIZE` or
similar. I chose not to do that -- users will probably copy/paste that with any
spelling, and not renaming it makes migration docs simpler.
Co-Authored-By: Alexander Belopolsky <abalkin@users.noreply.github.com>
Co-Authored-By: Matthias Braun <MatzeB@users.noreply.github.com>
This is part of the effort to consolidate global variables, to make them easier to manage (and make it easier to later move some of them to PyInterpreterState).
https://github.com/python/cpython/issues/81057
Introduce the autocommit attribute to Connection and the autocommit
parameter to connect() for PEP 249-compliant transaction handling.
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
Co-authored-by: C.A.M. Gerlach <CAM.Gerlach@Gerlach.CAM>
Co-authored-by: Géry Ogam <gery.ogam@gmail.com>
We actually don't move PyImport_Inittab. Instead, we make a copy that we keep on _PyRuntimeState and use only that after Py_Initialize(). We also prevent folks from modifying PyImport_Inittab (the best we can) after that point.
https://github.com/python/cpython/issues/81057
The global allocators were stored in 3 static global variables: _PyMem_Raw, _PyMem, and _PyObject. State for the "small block" allocator was stored in another 13. That makes a total of 16 global variables. We are moving all 16 to the _PyRuntimeState struct as part of the work for gh-81057. (If PEP 684 is accepted then we will follow up by moving them all to PyInterpreterState.)
https://github.com/python/cpython/issues/81057
As we consolidate global variables, we find some objects that are almost suitable to add to _PyRuntimeState.global_objects, but have some small/sneaky bit of per-interpreter state (e.g. a weakref list). We're adding PyInterpreterState.static_objects so we can move such objects there. (We'll removed the _not_used field once we've added others.)
https://github.com/python/cpython/issues/81057
Up until now we had a single generated initializer macro for all the statically declared global objects in _PyRuntimeState, including several one-offs (e.g. the empty tuple). The one-offs don't need to be generated, but were because we had one big initializer. Having separate initializers for set of generated global objects allows us to generate only the ones we need to. This allows us to add initializers for one-off global objects without having to generate them.
https://github.com/python/cpython/issues/81057
* Adds EXIT_INTERPRETER instruction to exit PyEval_EvalDefault()
* Simplifies RETURN_VALUE, YIELD_VALUE and RETURN_GENERATOR instructions as they no longer need to check for entry frames.
The Py_CLEAR(), Py_SETREF() and Py_XSETREF() macros now only evaluate
their argument once. If an argument has side effects, these side
effects are no longer duplicated.
Add test_py_clear() and test_py_setref() unit tests to _testcapi.
Add _PyStaticObject_CheckRefcnt() function to make
_PyStaticObjects_CheckRefcnt() shorter. Use
_PyObject_ASSERT_FAILED_MSG() to log the object causing the fatal
error.
We do the following:
* move the generated _PyUnicode_InitStaticStrings() to its own file
* move the generated _PyStaticObjects_CheckRefcnt() to its own file
* include pycore_global_objects.h in extension modules instead of pycore_runtime_init.h
These changes help us avoid including things that aren't needed.
https://github.com/python/cpython/issues/90868
Add PyFrame_GetVar() and PyFrame_GetVarString() functions to get a
frame variable by its name.
Move PyFrameObject C API tests from test_capi to test_frame.
Previously, the optional restrictions on subinterpreters were: disallow fork, subprocess, and threads. By default, we were disallowing all three for "isolated" interpreters. We always allowed all three for the main interpreter and those created through the legacy `Py_NewInterpreter()` API.
Those settings were a bit conservative, so here we've adjusted the optional restrictions to: fork, exec, threads, and daemon threads. The default for "isolated" interpreters disables fork, exec, and daemon threads. Regular threads are allowed by default. We continue always allowing everything For the main interpreter and the legacy API.
In the code, we add `_PyInterpreterConfig.allow_exec` and `_PyInterpreterConfig.allow_daemon_threads`. We also add `Py_RTFLAGS_DAEMON_THREADS` and `Py_RTFLAGS_EXEC`.
Change FOR_ITER to have the same stack effect regardless of whether it branches or not.
Performance is unchanged as FOR_ITER (and specialized forms jump over the cleanup code).
(see https://github.com/python/cpython/issues/98608)
This change does the following:
1. change the argument to a new `_PyInterpreterConfig` struct
2. rename the function to `_Py_NewInterpreterFromConfig()`, inspired by `Py_InitializeFromConfig()` (takes a `_PyInterpreterConfig` instead of `isolated_subinterpreter`)
3. split up the boolean `isolated_subinterpreter` into the corresponding multiple granular settings
* allow_fork
* allow_subprocess
* allow_threads
4. add `PyInterpreterState.feature_flags` to store those settings
5. add a function for checking if a feature is enabled on an opaque `PyInterpreterState *`
6. drop `PyConfig._isolated_interpreter`
The existing default (see `Py_NewInterpeter()` and `Py_Initialize*()`) allows fork, subprocess, and threads and the optional "isolated" interpreter (see the `_xxsubinterpreters` module) disables all three. None of that changes here; the defaults are preserved.
Note that the given `_PyInterpreterConfig` will not be used outside `_Py_NewInterpreterFromConfig()`, nor preserved. This contrasts with how `PyConfig` is currently preserved, used, and even modified outside `Py_InitializeFromConfig()`. I'd rather just avoid that mess from the start for `_PyInterpreterConfig`. We can preserve it later if we find an actual need.
This change allows us to follow up with a number of improvements (e.g. stop disallowing subprocess and support disallowing exec instead).
(Note that this PR adds "private" symbols. We'll probably make them public, and add docs, in a separate change.)
Added os.setns and os.unshare to easily switch between namespaces
on Linux.
Co-authored-by: Christian Heimes <christian@python.org>
Co-authored-by: CAM Gerlach <CAM.Gerlach@Gerlach.CAM>
Co-authored-by: Victor Stinner <vstinner@python.org>
_Py_block_ty defines four types of block, FunctionBlock, ClassBlock, ModuleBlock and AnnotationBlock.
But _symtable_entry.ste_type only comments three of them, I think it's better both sides are consistent.
It had to live as a global outside of PyConfig for stable ABI reasons in
the pre-3.12 backports.
This removes the `_Py_global_config_int_max_str_digits` and gets rid of
the equivalent field in the internal `struct _is PyInterpreterState` as
code can just use the existing nested config struct within that.
Adds tests to verify unique settings and configs in subinterpreters.
Converting a large enough `int` to a decimal string raises `ValueError` as expected. However, the raise comes _after_ the quadratic-time base-conversion algorithm has run to completion. For effective DOS prevention, we need some kind of check before entering the quadratic-time loop. Oops! =)
The quick fix: essentially we catch _most_ values that exceed the threshold up front. Those that slip through will still be on the small side (read: sufficiently fast), and will get caught by the existing check so that the limit remains exact.
The justification for the current check. The C code check is:
```c
max_str_digits / (3 * PyLong_SHIFT) <= (size_a - 11) / 10
```
In GitHub markdown math-speak, writing $M$ for `max_str_digits`, $L$ for `PyLong_SHIFT` and $s$ for `size_a`, that check is:
$$\left\lfloor\frac{M}{3L}\right\rfloor \le \left\lfloor\frac{s - 11}{10}\right\rfloor$$
From this it follows that
$$\frac{M}{3L} < \frac{s-1}{10}$$
hence that
$$\frac{L(s-1)}{M} > \frac{10}{3} > \log_2(10).$$
So
$$2^{L(s-1)} > 10^M.$$
But our input integer $a$ satisfies $|a| \ge 2^{L(s-1)}$, so $|a|$ is larger than $10^M$. This shows that we don't accidentally capture anything _below_ the intended limit in the check.
<!-- gh-issue-number: gh-95778 -->
* Issue: gh-95778
<!-- /gh-issue-number -->
Co-authored-by: Gregory P. Smith [Google LLC] <greg@krypto.org>
Integer to and from text conversions via CPython's bignum `int` type is not safe against denial of service attacks due to malicious input. Very large input strings with hundred thousands of digits can consume several CPU seconds.
This PR comes fresh from a pile of work done in our private PSRT security response team repo.
Signed-off-by: Christian Heimes [Red Hat] <christian@python.org>
Tons-of-polishing-up-by: Gregory P. Smith [Google] <greg@krypto.org>
Reviews via the private PSRT repo via many others (see the NEWS entry in the PR).
<!-- gh-issue-number: gh-95778 -->
* Issue: gh-95778
<!-- /gh-issue-number -->
I wrote up [a one pager for the release managers](https://docs.google.com/document/d/1KjuF_aXlzPUxTK4BMgezGJ2Pn7uevfX7g0_mvgHlL7Y/edit#). Much of that text wound up in the Issue. Backports PRs already exist. See the issue for links.
⚠️⚠️ Note for reviewers, hackers and fellow systems/low-level/compiler engineers ⚠️⚠️
If you have a lot of experience with this kind of shenanigans and want to improve the **first** version, **please make a PR against my branch** or **reach out by email** or **suggest code changes directly on GitHub**.
If you have any **refinements or optimizations** please, wait until the first version is merged before starting hacking or proposing those so we can keep this PR productive.
In the limited C API with a debug build, Py_INCREF() is implemented
by calling _Py_IncRef() which calls Py_INCREF(). Only call
_Py_INCREF_STAT_INC() once.
* gh-93503: Add APIs to set profiling and tracing functions in all threads in the C-API
* Use a separate API
* Fix NEWS entry
* Add locks around the loop
* Document ignoring exceptions
* Use the new APIs in the sys module
* Update docs
We only statically initialize for core code and builtin modules. Extension modules still create
the tuple at runtime. We'll solve that part of interpreter isolation separately.
This change includes generated code. The non-generated changes are in:
* Tools/clinic/clinic.py
* Python/getargs.c
* Include/cpython/modsupport.h
* Makefile.pre.in (re-generate global strings after running clinic)
* very minor tweaks to Modules/_codecsmodule.c and Python/Python-tokenize.c
All other changes are generated code (clinic, global strings).
* Store tp_weaklist on the interpreter state for static builtin types.
* Factor out _PyStaticType_GET_WEAKREFS_LISTPTR().
* Add _PyStaticType_ClearWeakRefs().
* Add a comment about how _PyStaticType_ClearWeakRefs() loops.
* Document the change.
* Update Doc/whatsnew/3.12.rst
* Fix a typo.
This is the last precursor to storing tp_subclasses (and tp_weaklist) on the interpreter state for static builtin types.
Here we add per-type storage on PyInterpreterState, but only for the static builtin types. This involves the following:
* add PyInterpreterState.types
* move PyInterpreterState.type_cache to it
* add a "num_builtins_initialized" field
* add a "builtins" field (a static array big enough for all the static builtin types)
* add _PyStaticType_GetState() to look up a static builtin type's state
* (temporarily) add PyTypeObject.tp_static_builtin_index (to hold the type's index into PyInterpreterState.types.builtins)
We will be eliminating tp_static_builtin_index in a later change.
* Add _Py_memory_repeat function to pycore_list
* Add _Py_RefcntAdd function to pycore_object
* Use the new functions in tuplerepeat, list_repeat, and list_inplace_repeat
This is the first of several precursors to storing tp_subclasses (and tp_weaklist) on the interpreter state for static builtin types.
We do the following:
* add `_PyStaticType_InitBuiltin()`
* add `_Py_TPFLAGS_STATIC_BUILTIN`
* set it on all static builtin types in `_PyStaticType_InitBuiltin()`
* shuffle some code around to be able to use _PyStaticType_InitBuiltin()
* rename `_PyStructSequence_InitType()` to `_PyStructSequence_InitBuiltinWithFlags()`
* add `_PyStructSequence_InitBuiltin()`.
Move the follow functions and type from frameobject.h to pyframe.h,
so the standard <Python.h> provide frame getter functions:
* PyFrame_Check()
* PyFrame_GetBack()
* PyFrame_GetBuiltins()
* PyFrame_GetGenerator()
* PyFrame_GetGlobals()
* PyFrame_GetLasti()
* PyFrame_GetLocals()
* PyFrame_Type
Remove #include "frameobject.h" from many C files. It's no longer
needed.
Deprecate global configuration variable like
Py_IgnoreEnvironmentFlag: the Py_InitializeFromConfig() API should be
instead.
Fix declaration of Py_GETENV(): use PyAPI_FUNC(), not PyAPI_DATA().
It combines PyImport_ImportModule() and PyObject_GetAttrString()
and saves 4-6 lines of code on every use.
Add also _PyImport_GetModuleAttr() which takes Python strings as arguments.
Add C++ overloads for _Py_CAST_impl() to handle 0/NULL. This will allow
C++ extensions that pass 0 or NULL to macros using _Py_CAST() to
continue to compile. Without this, you get an error like:
invalid ‘static_cast’ from type ‘int’ to type ‘_object*’
The modern way to use a NULL value in C++ is to use nullptr. However,
we want to not break extensions that do things the old way.
Co-authored-by: serge-sans-paille
This was added for bpo-40514 (gh-84694) to test out a per-interpreter GIL. However, it has since proven unnecessary to keep the experiment in the repo. (It can be done as a branch in a fork like normal.) So here we are removing:
* the configure option
* the macro
* the code enabled by the macro
Added a new stable API function ``PyType_FromMetaclass``, which mirrors
the behavior of ``PyType_FromModuleAndSpec`` except that it takes an
additional metaclass argument. This is, e.g., useful for language
binding tools that need to store additional information in the type
object.
Python now always use the ``%zu`` and ``%zd`` printf formats to
format a size_t or Py_ssize_t number. Building Python 3.12 requires a
C11 compiler, so these printf formats are now always supported.
* PyObject_Print() and _PyObject_Dump() now use the printf %zd format
to display an object reference count.
* Update PY_FORMAT_SIZE_T comment.
* Remove outdated notes about the %zd format in PyBytes_FromFormat()
and PyUnicode_FromFormat() documentations.
* configure no longer checks for the %zd format and no longer defines
PY_FORMAT_SIZE_T macro in pyconfig.h.
* pymacconfig.h no longer undefines PY_FORMAT_SIZE_T: macOS 10.4 is
no longer supported. Python 3.12 now requires macOS 10.6 (Snow
Leopard) or newer.
Also while there, clarify a few things about why we reduce the hash to 32 bits.
Co-authored-by: Eli Libman <eli@hyro.ai>
Co-authored-by: Yury Selivanov <yury@edgedb.com>
Co-authored-by: Łukasz Langa <lukasz@langa.pl>
Update documentation of PyUnicode_DecodeFSDefault(),
PyUnicode_DecodeFSDefaultAndSize() and PyUnicode_EncodeFSDefault():
they now use the filesystem encoding and error handler of PyConfig,
Py_FileSystemDefaultEncoding and Py_FileSystemDefaultEncodeErrors
variables are no longer used.
Avoid mixing declarations and code in the C API to fix the compiler
warning: "ISO C90 forbids mixed declarations and code"
[-Werror=declaration-after-statement].
Remove the PyUnicode_InternImmortal() function and the
SSTATE_INTERNED_IMMORTAL macro.
The PyUnicode_InternImmortal() function is still exported in the
stable ABI. The function is removed from the API.
PyASCIIObject.state.interned size is now a single bit, rather than 2
bits.
Keep SSTATE_NOT_INTERNED and SSTATE_INTERNED_MORTAL macros for
backward compatibility, but no longer use them internally since the
interned member is now a single bit and so can only have two values
(interned or not interned).
Update stats of _PyUnicode_ClearInterned().
In the limited C API version 3.12, PyUnicode_KIND() is now
implemented as a static inline function. Keep the macro for the
regular C API and for the limited C API version 3.11 and older to
prevent introducing new compiler warnings.
Update _decimal.c and stringlib/eq.h for PyUnicode_KIND().
Use _Py_CAST() and _Py_STATIC_CAST() in macros wrapping static inline
functions of unicodeobject.h.
Change also the kind type from unsigned int to int: same parameter
type than PyUnicode_FromKindAndData().
The limited API version 3.11 no longer casts arguments to expected
types.
Use the PyObject* type for parameters of static inline functions:
* Py_SIZE(): same parameter type than PyObject_Size()
* PyList_GET_SIZE(), PyList_SET_ITEM(): same parameter type than
PyList_Size() and PyList_SetItem()
* PyTuple_GET_SIZE(), PyTuple_SET_ITEM(): same parameter type than
PyTuple_Size() and PyTuple_SetItem().
The limited API version 3.11 no longer casts arguments to expected
types of functions of functions:
* PyList_GET_SIZE(), PyList_SET_ITEM()
* PyTuple_GET_SIZE(), PyTuple_SET_ITEM()
* PyWeakref_GET_OBJECT()
Convert the following Unicode macros to static inline functions.
Surrogate functions:
* Py_UNICODE_IS_SURROGATE()
* Py_UNICODE_IS_HIGH_SURROGATE()
* Py_UNICODE_IS_LOW_SURROGATE()
* Py_UNICODE_HIGH_SURROGATE()
* Py_UNICODE_LOW_SURROGATE()
* Py_UNICODE_JOIN_SURROGATES()
"Is" functions:
* Py_UNICODE_ISALNUM()
* Py_UNICODE_ISSPACE()
In the implementation of these functions, the character type is now
well defined to Py_UCS4.
Convert the following macros to static inline functions:
* PyCell_GET()
* PyCell_SET()
Limited C API version 3.12 no longer casts arguments.
Fix also usage of PyCell_SET(): only delete the old value after
setting the new value.
Remove the token.h header file. There was never any public tokenizer
C API. The token.h header file was only designed to be used by Python
internals.
Move Include/token.h to Include/internal/pycore_token.h. Including
this header file now requires that the Py_BUILD_CORE macro is
defined. It no longer checks for the Py_LIMITED_API macro.
Rename functions:
* PyToken_OneChar() => _PyToken_OneChar()
* PyToken_TwoChars() => _PyToken_TwoChars()
* PyToken_ThreeChars() => _PyToken_ThreeChars()
Convert the following macros to static inline functions:
* _Py_AS_GC()
* _PyGCHead_FINALIZED(), _PyGCHead_SET_FINALIZED()
* _PyGCHead_NEXT(), _PyGCHead_SET_NEXT()
* _PyGCHead_PREV(), _PyGCHead_SET_PREV()
* _PyGC_FINALIZED(), _PyGC_SET_FINALIZED()
* _PyObject_GC_IS_TRACKED()
* _PyObject_GC_MAY_BE_TRACKED()
Add a macro wrapping the _PyObject_GC_IS_TRACKED() function to cast
the argument to PyObject*.
In C++, the _PyObject_EXTRA_INIT macro now uses nullptr, rather than
0, to initialize the _ob_next and _ob_prev members of the PyObject
structure.
Fix test_cppext failure when Python is built with
./configure --with-trace-refs.
Add the -P command line option and the PYTHONSAFEPATH environment
variable to not prepend a potentially unsafe path to sys.path.
* Add sys.flags.safe_path flag.
* Add PyConfig.safe_path member.
* Programs/_bootstrap_python.c uses config.safe_path=0.
* Update subprocess._optim_args_from_interpreter_flags() to handle
the -P command line option.
* Modules/getpath.py sets safe_path to 1 if a "._pth" file is
present.
Convert the following macros to static inline functions:
* PyCFunction_GET_CLASS()
* PyCFunction_GET_FLAGS()
* PyCFunction_GET_FUNCTION()
* PyCFunction_GET_SELF()
Limited C API version 3.11 no longer casts arguments.
Currently, calling Py_EnterRecursiveCall() and
Py_LeaveRecursiveCall() may use a function call or a static inline
function call, depending if the internal pycore_ceval.h header file
is included or not. Use a different name for the static inline
function to ensure that the static inline function is always used in
Python internals for best performance. Similar approach than
PyThreadState_GET() (function call) and _PyThreadState_GET() (static
inline function).
* Rename _Py_EnterRecursiveCall() to _Py_EnterRecursiveCallTstate()
* Rename _Py_LeaveRecursiveCall() to _Py_LeaveRecursiveCallTstate()
* pycore_ceval.h: Rename Py_EnterRecursiveCall() to
_Py_EnterRecursiveCall() and Py_LeaveRecursiveCall() and
_Py_LeaveRecursiveCall()
Fix C++ compiler warnings: "zero as null pointer constant"
(clang -Wzero-as-null-pointer-constant).
* Add the _Py_NULL macro used by static inline functions to use
nullptr in C++.
* Replace NULL with nullptr in _testcppext.cpp.
Use _Py_CAST(), _Py_STATIC_CAST() and _PyASCIIObject_CAST() in
static inline functions to fix C++ compiler warnings:
"use of old-style cast" (clang -Wold-style-cast).
test_cppext now builds the C++ test extension with -Wold-style-cast.
Convert the following macros to static inline functions:
* PyByteArray_AS_STRING()
* PyByteArray_GET_SIZE()
* PyBytes_AS_STRING()
* PyBytes_GET_SIZE()
Limited C API version 3.11 no longer casts arguments.
Add _PyBytes_CAST() and _PyByteArray_CAST() macros.