mirror of https://github.com/python/cpython
gh-81057: Move the Allocators to _PyRuntimeState (gh-99217)
The global allocators were stored in 3 static global variables: _PyMem_Raw, _PyMem, and _PyObject. State for the "small block" allocator was stored in another 13. That makes a total of 16 global variables. We are moving all 16 to the _PyRuntimeState struct as part of the work for gh-81057. (If PEP 684 is accepted then we will follow up by moving them all to PyInterpreterState.) https://github.com/python/cpython/issues/81057
This commit is contained in:
parent
55c96e8053
commit
67807cfc87
|
@ -0,0 +1,689 @@
|
|||
#ifndef Py_INTERNAL_OBMALLOC_H
|
||||
#define Py_INTERNAL_OBMALLOC_H
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#ifndef Py_BUILD_CORE
|
||||
# error "this header requires Py_BUILD_CORE define"
|
||||
#endif
|
||||
|
||||
|
||||
typedef unsigned int pymem_uint; /* assuming >= 16 bits */
|
||||
|
||||
#undef uint
|
||||
#define uint pymem_uint
|
||||
|
||||
|
||||
/* An object allocator for Python.
|
||||
|
||||
Here is an introduction to the layers of the Python memory architecture,
|
||||
showing where the object allocator is actually used (layer +2), It is
|
||||
called for every object allocation and deallocation (PyObject_New/Del),
|
||||
unless the object-specific allocators implement a proprietary allocation
|
||||
scheme (ex.: ints use a simple free list). This is also the place where
|
||||
the cyclic garbage collector operates selectively on container objects.
|
||||
|
||||
|
||||
Object-specific allocators
|
||||
_____ ______ ______ ________
|
||||
[ int ] [ dict ] [ list ] ... [ string ] Python core |
|
||||
+3 | <----- Object-specific memory -----> | <-- Non-object memory --> |
|
||||
_______________________________ | |
|
||||
[ Python's object allocator ] | |
|
||||
+2 | ####### Object memory ####### | <------ Internal buffers ------> |
|
||||
______________________________________________________________ |
|
||||
[ Python's raw memory allocator (PyMem_ API) ] |
|
||||
+1 | <----- Python memory (under PyMem manager's control) ------> | |
|
||||
__________________________________________________________________
|
||||
[ Underlying general-purpose allocator (ex: C library malloc) ]
|
||||
0 | <------ Virtual memory allocated for the python process -------> |
|
||||
|
||||
=========================================================================
|
||||
_______________________________________________________________________
|
||||
[ OS-specific Virtual Memory Manager (VMM) ]
|
||||
-1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |
|
||||
__________________________________ __________________________________
|
||||
[ ] [ ]
|
||||
-2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |
|
||||
|
||||
*/
|
||||
/*==========================================================================*/
|
||||
|
||||
/* A fast, special-purpose memory allocator for small blocks, to be used
|
||||
on top of a general-purpose malloc -- heavily based on previous art. */
|
||||
|
||||
/* Vladimir Marangozov -- August 2000 */
|
||||
|
||||
/*
|
||||
* "Memory management is where the rubber meets the road -- if we do the wrong
|
||||
* thing at any level, the results will not be good. And if we don't make the
|
||||
* levels work well together, we are in serious trouble." (1)
|
||||
*
|
||||
* (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles,
|
||||
* "Dynamic Storage Allocation: A Survey and Critical Review",
|
||||
* in Proc. 1995 Int'l. Workshop on Memory Management, September 1995.
|
||||
*/
|
||||
|
||||
/* #undef WITH_MEMORY_LIMITS */ /* disable mem limit checks */
|
||||
|
||||
/*==========================================================================*/
|
||||
|
||||
/*
|
||||
* Allocation strategy abstract:
|
||||
*
|
||||
* For small requests, the allocator sub-allocates <Big> blocks of memory.
|
||||
* Requests greater than SMALL_REQUEST_THRESHOLD bytes are routed to the
|
||||
* system's allocator.
|
||||
*
|
||||
* Small requests are grouped in size classes spaced 8 bytes apart, due
|
||||
* to the required valid alignment of the returned address. Requests of
|
||||
* a particular size are serviced from memory pools of 4K (one VMM page).
|
||||
* Pools are fragmented on demand and contain free lists of blocks of one
|
||||
* particular size class. In other words, there is a fixed-size allocator
|
||||
* for each size class. Free pools are shared by the different allocators
|
||||
* thus minimizing the space reserved for a particular size class.
|
||||
*
|
||||
* This allocation strategy is a variant of what is known as "simple
|
||||
* segregated storage based on array of free lists". The main drawback of
|
||||
* simple segregated storage is that we might end up with lot of reserved
|
||||
* memory for the different free lists, which degenerate in time. To avoid
|
||||
* this, we partition each free list in pools and we share dynamically the
|
||||
* reserved space between all free lists. This technique is quite efficient
|
||||
* for memory intensive programs which allocate mainly small-sized blocks.
|
||||
*
|
||||
* For small requests we have the following table:
|
||||
*
|
||||
* Request in bytes Size of allocated block Size class idx
|
||||
* ----------------------------------------------------------------
|
||||
* 1-8 8 0
|
||||
* 9-16 16 1
|
||||
* 17-24 24 2
|
||||
* 25-32 32 3
|
||||
* 33-40 40 4
|
||||
* 41-48 48 5
|
||||
* 49-56 56 6
|
||||
* 57-64 64 7
|
||||
* 65-72 72 8
|
||||
* ... ... ...
|
||||
* 497-504 504 62
|
||||
* 505-512 512 63
|
||||
*
|
||||
* 0, SMALL_REQUEST_THRESHOLD + 1 and up: routed to the underlying
|
||||
* allocator.
|
||||
*/
|
||||
|
||||
/*==========================================================================*/
|
||||
|
||||
/*
|
||||
* -- Main tunable settings section --
|
||||
*/
|
||||
|
||||
/*
|
||||
* Alignment of addresses returned to the user. 8-bytes alignment works
|
||||
* on most current architectures (with 32-bit or 64-bit address buses).
|
||||
* The alignment value is also used for grouping small requests in size
|
||||
* classes spaced ALIGNMENT bytes apart.
|
||||
*
|
||||
* You shouldn't change this unless you know what you are doing.
|
||||
*/
|
||||
|
||||
#if SIZEOF_VOID_P > 4
|
||||
#define ALIGNMENT 16 /* must be 2^N */
|
||||
#define ALIGNMENT_SHIFT 4
|
||||
#else
|
||||
#define ALIGNMENT 8 /* must be 2^N */
|
||||
#define ALIGNMENT_SHIFT 3
|
||||
#endif
|
||||
|
||||
/* Return the number of bytes in size class I, as a uint. */
|
||||
#define INDEX2SIZE(I) (((pymem_uint)(I) + 1) << ALIGNMENT_SHIFT)
|
||||
|
||||
/*
|
||||
* Max size threshold below which malloc requests are considered to be
|
||||
* small enough in order to use preallocated memory pools. You can tune
|
||||
* this value according to your application behaviour and memory needs.
|
||||
*
|
||||
* Note: a size threshold of 512 guarantees that newly created dictionaries
|
||||
* will be allocated from preallocated memory pools on 64-bit.
|
||||
*
|
||||
* The following invariants must hold:
|
||||
* 1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 512
|
||||
* 2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT
|
||||
*
|
||||
* Although not required, for better performance and space efficiency,
|
||||
* it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2.
|
||||
*/
|
||||
#define SMALL_REQUEST_THRESHOLD 512
|
||||
#define NB_SMALL_SIZE_CLASSES (SMALL_REQUEST_THRESHOLD / ALIGNMENT)
|
||||
|
||||
/*
|
||||
* The system's VMM page size can be obtained on most unices with a
|
||||
* getpagesize() call or deduced from various header files. To make
|
||||
* things simpler, we assume that it is 4K, which is OK for most systems.
|
||||
* It is probably better if this is the native page size, but it doesn't
|
||||
* have to be. In theory, if SYSTEM_PAGE_SIZE is larger than the native page
|
||||
* size, then `POOL_ADDR(p)->arenaindex' could rarely cause a segmentation
|
||||
* violation fault. 4K is apparently OK for all the platforms that python
|
||||
* currently targets.
|
||||
*/
|
||||
#define SYSTEM_PAGE_SIZE (4 * 1024)
|
||||
|
||||
/*
|
||||
* Maximum amount of memory managed by the allocator for small requests.
|
||||
*/
|
||||
#ifdef WITH_MEMORY_LIMITS
|
||||
#ifndef SMALL_MEMORY_LIMIT
|
||||
#define SMALL_MEMORY_LIMIT (64 * 1024 * 1024) /* 64 MB -- more? */
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if !defined(WITH_PYMALLOC_RADIX_TREE)
|
||||
/* Use radix-tree to track arena memory regions, for address_in_range().
|
||||
* Enable by default since it allows larger pool sizes. Can be disabled
|
||||
* using -DWITH_PYMALLOC_RADIX_TREE=0 */
|
||||
#define WITH_PYMALLOC_RADIX_TREE 1
|
||||
#endif
|
||||
|
||||
#if SIZEOF_VOID_P > 4
|
||||
/* on 64-bit platforms use larger pools and arenas if we can */
|
||||
#define USE_LARGE_ARENAS
|
||||
#if WITH_PYMALLOC_RADIX_TREE
|
||||
/* large pools only supported if radix-tree is enabled */
|
||||
#define USE_LARGE_POOLS
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/*
|
||||
* The allocator sub-allocates <Big> blocks of memory (called arenas) aligned
|
||||
* on a page boundary. This is a reserved virtual address space for the
|
||||
* current process (obtained through a malloc()/mmap() call). In no way this
|
||||
* means that the memory arenas will be used entirely. A malloc(<Big>) is
|
||||
* usually an address range reservation for <Big> bytes, unless all pages within
|
||||
* this space are referenced subsequently. So malloc'ing big blocks and not
|
||||
* using them does not mean "wasting memory". It's an addressable range
|
||||
* wastage...
|
||||
*
|
||||
* Arenas are allocated with mmap() on systems supporting anonymous memory
|
||||
* mappings to reduce heap fragmentation.
|
||||
*/
|
||||
#ifdef USE_LARGE_ARENAS
|
||||
#define ARENA_BITS 20 /* 1 MiB */
|
||||
#else
|
||||
#define ARENA_BITS 18 /* 256 KiB */
|
||||
#endif
|
||||
#define ARENA_SIZE (1 << ARENA_BITS)
|
||||
#define ARENA_SIZE_MASK (ARENA_SIZE - 1)
|
||||
|
||||
#ifdef WITH_MEMORY_LIMITS
|
||||
#define MAX_ARENAS (SMALL_MEMORY_LIMIT / ARENA_SIZE)
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Size of the pools used for small blocks. Must be a power of 2.
|
||||
*/
|
||||
#ifdef USE_LARGE_POOLS
|
||||
#define POOL_BITS 14 /* 16 KiB */
|
||||
#else
|
||||
#define POOL_BITS 12 /* 4 KiB */
|
||||
#endif
|
||||
#define POOL_SIZE (1 << POOL_BITS)
|
||||
#define POOL_SIZE_MASK (POOL_SIZE - 1)
|
||||
|
||||
#if !WITH_PYMALLOC_RADIX_TREE
|
||||
#if POOL_SIZE != SYSTEM_PAGE_SIZE
|
||||
# error "pool size must be equal to system page size"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#define MAX_POOLS_IN_ARENA (ARENA_SIZE / POOL_SIZE)
|
||||
#if MAX_POOLS_IN_ARENA * POOL_SIZE != ARENA_SIZE
|
||||
# error "arena size not an exact multiple of pool size"
|
||||
#endif
|
||||
|
||||
/*
|
||||
* -- End of tunable settings section --
|
||||
*/
|
||||
|
||||
/*==========================================================================*/
|
||||
|
||||
/* When you say memory, my mind reasons in terms of (pointers to) blocks */
|
||||
typedef uint8_t pymem_block;
|
||||
|
||||
/* Pool for small blocks. */
|
||||
struct pool_header {
|
||||
union { pymem_block *_padding;
|
||||
uint count; } ref; /* number of allocated blocks */
|
||||
pymem_block *freeblock; /* pool's free list head */
|
||||
struct pool_header *nextpool; /* next pool of this size class */
|
||||
struct pool_header *prevpool; /* previous pool "" */
|
||||
uint arenaindex; /* index into arenas of base adr */
|
||||
uint szidx; /* block size class index */
|
||||
uint nextoffset; /* bytes to virgin block */
|
||||
uint maxnextoffset; /* largest valid nextoffset */
|
||||
};
|
||||
|
||||
typedef struct pool_header *poolp;
|
||||
|
||||
/* Record keeping for arenas. */
|
||||
struct arena_object {
|
||||
/* The address of the arena, as returned by malloc. Note that 0
|
||||
* will never be returned by a successful malloc, and is used
|
||||
* here to mark an arena_object that doesn't correspond to an
|
||||
* allocated arena.
|
||||
*/
|
||||
uintptr_t address;
|
||||
|
||||
/* Pool-aligned pointer to the next pool to be carved off. */
|
||||
pymem_block* pool_address;
|
||||
|
||||
/* The number of available pools in the arena: free pools + never-
|
||||
* allocated pools.
|
||||
*/
|
||||
uint nfreepools;
|
||||
|
||||
/* The total number of pools in the arena, whether or not available. */
|
||||
uint ntotalpools;
|
||||
|
||||
/* Singly-linked list of available pools. */
|
||||
struct pool_header* freepools;
|
||||
|
||||
/* Whenever this arena_object is not associated with an allocated
|
||||
* arena, the nextarena member is used to link all unassociated
|
||||
* arena_objects in the singly-linked `unused_arena_objects` list.
|
||||
* The prevarena member is unused in this case.
|
||||
*
|
||||
* When this arena_object is associated with an allocated arena
|
||||
* with at least one available pool, both members are used in the
|
||||
* doubly-linked `usable_arenas` list, which is maintained in
|
||||
* increasing order of `nfreepools` values.
|
||||
*
|
||||
* Else this arena_object is associated with an allocated arena
|
||||
* all of whose pools are in use. `nextarena` and `prevarena`
|
||||
* are both meaningless in this case.
|
||||
*/
|
||||
struct arena_object* nextarena;
|
||||
struct arena_object* prevarena;
|
||||
};
|
||||
|
||||
#define POOL_OVERHEAD _Py_SIZE_ROUND_UP(sizeof(struct pool_header), ALIGNMENT)
|
||||
|
||||
#define DUMMY_SIZE_IDX 0xffff /* size class of newly cached pools */
|
||||
|
||||
/* Round pointer P down to the closest pool-aligned address <= P, as a poolp */
|
||||
#define POOL_ADDR(P) ((poolp)_Py_ALIGN_DOWN((P), POOL_SIZE))
|
||||
|
||||
/* Return total number of blocks in pool of size index I, as a uint. */
|
||||
#define NUMBLOCKS(I) ((pymem_uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I))
|
||||
|
||||
/*==========================================================================*/
|
||||
|
||||
/*
|
||||
* Pool table -- headed, circular, doubly-linked lists of partially used pools.
|
||||
|
||||
This is involved. For an index i, usedpools[i+i] is the header for a list of
|
||||
all partially used pools holding small blocks with "size class idx" i. So
|
||||
usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size
|
||||
16, and so on: index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT.
|
||||
|
||||
Pools are carved off an arena's highwater mark (an arena_object's pool_address
|
||||
member) as needed. Once carved off, a pool is in one of three states forever
|
||||
after:
|
||||
|
||||
used == partially used, neither empty nor full
|
||||
At least one block in the pool is currently allocated, and at least one
|
||||
block in the pool is not currently allocated (note this implies a pool
|
||||
has room for at least two blocks).
|
||||
This is a pool's initial state, as a pool is created only when malloc
|
||||
needs space.
|
||||
The pool holds blocks of a fixed size, and is in the circular list headed
|
||||
at usedpools[i] (see above). It's linked to the other used pools of the
|
||||
same size class via the pool_header's nextpool and prevpool members.
|
||||
If all but one block is currently allocated, a malloc can cause a
|
||||
transition to the full state. If all but one block is not currently
|
||||
allocated, a free can cause a transition to the empty state.
|
||||
|
||||
full == all the pool's blocks are currently allocated
|
||||
On transition to full, a pool is unlinked from its usedpools[] list.
|
||||
It's not linked to from anything then anymore, and its nextpool and
|
||||
prevpool members are meaningless until it transitions back to used.
|
||||
A free of a block in a full pool puts the pool back in the used state.
|
||||
Then it's linked in at the front of the appropriate usedpools[] list, so
|
||||
that the next allocation for its size class will reuse the freed block.
|
||||
|
||||
empty == all the pool's blocks are currently available for allocation
|
||||
On transition to empty, a pool is unlinked from its usedpools[] list,
|
||||
and linked to the front of its arena_object's singly-linked freepools list,
|
||||
via its nextpool member. The prevpool member has no meaning in this case.
|
||||
Empty pools have no inherent size class: the next time a malloc finds
|
||||
an empty list in usedpools[], it takes the first pool off of freepools.
|
||||
If the size class needed happens to be the same as the size class the pool
|
||||
last had, some pool initialization can be skipped.
|
||||
|
||||
|
||||
Block Management
|
||||
|
||||
Blocks within pools are again carved out as needed. pool->freeblock points to
|
||||
the start of a singly-linked list of free blocks within the pool. When a
|
||||
block is freed, it's inserted at the front of its pool's freeblock list. Note
|
||||
that the available blocks in a pool are *not* linked all together when a pool
|
||||
is initialized. Instead only "the first two" (lowest addresses) blocks are
|
||||
set up, returning the first such block, and setting pool->freeblock to a
|
||||
one-block list holding the second such block. This is consistent with that
|
||||
pymalloc strives at all levels (arena, pool, and block) never to touch a piece
|
||||
of memory until it's actually needed.
|
||||
|
||||
So long as a pool is in the used state, we're certain there *is* a block
|
||||
available for allocating, and pool->freeblock is not NULL. If pool->freeblock
|
||||
points to the end of the free list before we've carved the entire pool into
|
||||
blocks, that means we simply haven't yet gotten to one of the higher-address
|
||||
blocks. The offset from the pool_header to the start of "the next" virgin
|
||||
block is stored in the pool_header nextoffset member, and the largest value
|
||||
of nextoffset that makes sense is stored in the maxnextoffset member when a
|
||||
pool is initialized. All the blocks in a pool have been passed out at least
|
||||
once when and only when nextoffset > maxnextoffset.
|
||||
|
||||
|
||||
Major obscurity: While the usedpools vector is declared to have poolp
|
||||
entries, it doesn't really. It really contains two pointers per (conceptual)
|
||||
poolp entry, the nextpool and prevpool members of a pool_header. The
|
||||
excruciating initialization code below fools C so that
|
||||
|
||||
usedpool[i+i]
|
||||
|
||||
"acts like" a genuine poolp, but only so long as you only reference its
|
||||
nextpool and prevpool members. The "- 2*sizeof(pymem_block *)" gibberish is
|
||||
compensating for that a pool_header's nextpool and prevpool members
|
||||
immediately follow a pool_header's first two members:
|
||||
|
||||
union { pymem_block *_padding;
|
||||
uint count; } ref;
|
||||
pymem_block *freeblock;
|
||||
|
||||
each of which consume sizeof(pymem_block *) bytes. So what usedpools[i+i] really
|
||||
contains is a fudged-up pointer p such that *if* C believes it's a poolp
|
||||
pointer, then p->nextpool and p->prevpool are both p (meaning that the headed
|
||||
circular list is empty).
|
||||
|
||||
It's unclear why the usedpools setup is so convoluted. It could be to
|
||||
minimize the amount of cache required to hold this heavily-referenced table
|
||||
(which only *needs* the two interpool pointer members of a pool_header). OTOH,
|
||||
referencing code has to remember to "double the index" and doing so isn't
|
||||
free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying
|
||||
on that C doesn't insert any padding anywhere in a pool_header at or before
|
||||
the prevpool member.
|
||||
**************************************************************************** */
|
||||
|
||||
#define OBMALLOC_USED_POOLS_SIZE (2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8)
|
||||
|
||||
struct _obmalloc_pools {
|
||||
poolp used[OBMALLOC_USED_POOLS_SIZE];
|
||||
};
|
||||
|
||||
|
||||
/*==========================================================================
|
||||
Arena management.
|
||||
|
||||
`arenas` is a vector of arena_objects. It contains maxarenas entries, some of
|
||||
which may not be currently used (== they're arena_objects that aren't
|
||||
currently associated with an allocated arena). Note that arenas proper are
|
||||
separately malloc'ed.
|
||||
|
||||
Prior to Python 2.5, arenas were never free()'ed. Starting with Python 2.5,
|
||||
we do try to free() arenas, and use some mild heuristic strategies to increase
|
||||
the likelihood that arenas eventually can be freed.
|
||||
|
||||
unused_arena_objects
|
||||
|
||||
This is a singly-linked list of the arena_objects that are currently not
|
||||
being used (no arena is associated with them). Objects are taken off the
|
||||
head of the list in new_arena(), and are pushed on the head of the list in
|
||||
PyObject_Free() when the arena is empty. Key invariant: an arena_object
|
||||
is on this list if and only if its .address member is 0.
|
||||
|
||||
usable_arenas
|
||||
|
||||
This is a doubly-linked list of the arena_objects associated with arenas
|
||||
that have pools available. These pools are either waiting to be reused,
|
||||
or have not been used before. The list is sorted to have the most-
|
||||
allocated arenas first (ascending order based on the nfreepools member).
|
||||
This means that the next allocation will come from a heavily used arena,
|
||||
which gives the nearly empty arenas a chance to be returned to the system.
|
||||
In my unscientific tests this dramatically improved the number of arenas
|
||||
that could be freed.
|
||||
|
||||
Note that an arena_object associated with an arena all of whose pools are
|
||||
currently in use isn't on either list.
|
||||
|
||||
Changed in Python 3.8: keeping usable_arenas sorted by number of free pools
|
||||
used to be done by one-at-a-time linear search when an arena's number of
|
||||
free pools changed. That could, overall, consume time quadratic in the
|
||||
number of arenas. That didn't really matter when there were only a few
|
||||
hundred arenas (typical!), but could be a timing disaster when there were
|
||||
hundreds of thousands. See bpo-37029.
|
||||
|
||||
Now we have a vector of "search fingers" to eliminate the need to search:
|
||||
nfp2lasta[nfp] returns the last ("rightmost") arena in usable_arenas
|
||||
with nfp free pools. This is NULL if and only if there is no arena with
|
||||
nfp free pools in usable_arenas.
|
||||
*/
|
||||
|
||||
/* How many arena_objects do we initially allocate?
|
||||
* 16 = can allocate 16 arenas = 16 * ARENA_SIZE = 4MB before growing the
|
||||
* `arenas` vector.
|
||||
*/
|
||||
#define INITIAL_ARENA_OBJECTS 16
|
||||
|
||||
struct _obmalloc_mgmt {
|
||||
/* Array of objects used to track chunks of memory (arenas). */
|
||||
struct arena_object* arenas;
|
||||
/* Number of slots currently allocated in the `arenas` vector. */
|
||||
uint maxarenas;
|
||||
|
||||
/* The head of the singly-linked, NULL-terminated list of available
|
||||
* arena_objects.
|
||||
*/
|
||||
struct arena_object* unused_arena_objects;
|
||||
|
||||
/* The head of the doubly-linked, NULL-terminated at each end, list of
|
||||
* arena_objects associated with arenas that have pools available.
|
||||
*/
|
||||
struct arena_object* usable_arenas;
|
||||
|
||||
/* nfp2lasta[nfp] is the last arena in usable_arenas with nfp free pools */
|
||||
struct arena_object* nfp2lasta[MAX_POOLS_IN_ARENA + 1];
|
||||
|
||||
/* Number of arenas allocated that haven't been free()'d. */
|
||||
size_t narenas_currently_allocated;
|
||||
|
||||
/* Total number of times malloc() called to allocate an arena. */
|
||||
size_t ntimes_arena_allocated;
|
||||
/* High water mark (max value ever seen) for narenas_currently_allocated. */
|
||||
size_t narenas_highwater;
|
||||
|
||||
Py_ssize_t raw_allocated_blocks;
|
||||
};
|
||||
|
||||
|
||||
#if WITH_PYMALLOC_RADIX_TREE
|
||||
/*==========================================================================*/
|
||||
/* radix tree for tracking arena usage. If enabled, used to implement
|
||||
address_in_range().
|
||||
|
||||
memory address bit allocation for keys
|
||||
|
||||
64-bit pointers, IGNORE_BITS=0 and 2^20 arena size:
|
||||
15 -> MAP_TOP_BITS
|
||||
15 -> MAP_MID_BITS
|
||||
14 -> MAP_BOT_BITS
|
||||
20 -> ideal aligned arena
|
||||
----
|
||||
64
|
||||
|
||||
64-bit pointers, IGNORE_BITS=16, and 2^20 arena size:
|
||||
16 -> IGNORE_BITS
|
||||
10 -> MAP_TOP_BITS
|
||||
10 -> MAP_MID_BITS
|
||||
8 -> MAP_BOT_BITS
|
||||
20 -> ideal aligned arena
|
||||
----
|
||||
64
|
||||
|
||||
32-bit pointers and 2^18 arena size:
|
||||
14 -> MAP_BOT_BITS
|
||||
18 -> ideal aligned arena
|
||||
----
|
||||
32
|
||||
|
||||
*/
|
||||
|
||||
#if SIZEOF_VOID_P == 8
|
||||
|
||||
/* number of bits in a pointer */
|
||||
#define POINTER_BITS 64
|
||||
|
||||
/* High bits of memory addresses that will be ignored when indexing into the
|
||||
* radix tree. Setting this to zero is the safe default. For most 64-bit
|
||||
* machines, setting this to 16 would be safe. The kernel would not give
|
||||
* user-space virtual memory addresses that have significant information in
|
||||
* those high bits. The main advantage to setting IGNORE_BITS > 0 is that less
|
||||
* virtual memory will be used for the top and middle radix tree arrays. Those
|
||||
* arrays are allocated in the BSS segment and so will typically consume real
|
||||
* memory only if actually accessed.
|
||||
*/
|
||||
#define IGNORE_BITS 0
|
||||
|
||||
/* use the top and mid layers of the radix tree */
|
||||
#define USE_INTERIOR_NODES
|
||||
|
||||
#elif SIZEOF_VOID_P == 4
|
||||
|
||||
#define POINTER_BITS 32
|
||||
#define IGNORE_BITS 0
|
||||
|
||||
#else
|
||||
|
||||
/* Currently this code works for 64-bit or 32-bit pointers only. */
|
||||
#error "obmalloc radix tree requires 64-bit or 32-bit pointers."
|
||||
|
||||
#endif /* SIZEOF_VOID_P */
|
||||
|
||||
/* arena_coverage_t members require this to be true */
|
||||
#if ARENA_BITS >= 32
|
||||
# error "arena size must be < 2^32"
|
||||
#endif
|
||||
|
||||
/* the lower bits of the address that are not ignored */
|
||||
#define ADDRESS_BITS (POINTER_BITS - IGNORE_BITS)
|
||||
|
||||
#ifdef USE_INTERIOR_NODES
|
||||
/* number of bits used for MAP_TOP and MAP_MID nodes */
|
||||
#define INTERIOR_BITS ((ADDRESS_BITS - ARENA_BITS + 2) / 3)
|
||||
#else
|
||||
#define INTERIOR_BITS 0
|
||||
#endif
|
||||
|
||||
#define MAP_TOP_BITS INTERIOR_BITS
|
||||
#define MAP_TOP_LENGTH (1 << MAP_TOP_BITS)
|
||||
#define MAP_TOP_MASK (MAP_TOP_LENGTH - 1)
|
||||
|
||||
#define MAP_MID_BITS INTERIOR_BITS
|
||||
#define MAP_MID_LENGTH (1 << MAP_MID_BITS)
|
||||
#define MAP_MID_MASK (MAP_MID_LENGTH - 1)
|
||||
|
||||
#define MAP_BOT_BITS (ADDRESS_BITS - ARENA_BITS - 2*INTERIOR_BITS)
|
||||
#define MAP_BOT_LENGTH (1 << MAP_BOT_BITS)
|
||||
#define MAP_BOT_MASK (MAP_BOT_LENGTH - 1)
|
||||
|
||||
#define MAP_BOT_SHIFT ARENA_BITS
|
||||
#define MAP_MID_SHIFT (MAP_BOT_BITS + MAP_BOT_SHIFT)
|
||||
#define MAP_TOP_SHIFT (MAP_MID_BITS + MAP_MID_SHIFT)
|
||||
|
||||
#define AS_UINT(p) ((uintptr_t)(p))
|
||||
#define MAP_BOT_INDEX(p) ((AS_UINT(p) >> MAP_BOT_SHIFT) & MAP_BOT_MASK)
|
||||
#define MAP_MID_INDEX(p) ((AS_UINT(p) >> MAP_MID_SHIFT) & MAP_MID_MASK)
|
||||
#define MAP_TOP_INDEX(p) ((AS_UINT(p) >> MAP_TOP_SHIFT) & MAP_TOP_MASK)
|
||||
|
||||
#if IGNORE_BITS > 0
|
||||
/* Return the ignored part of the pointer address. Those bits should be same
|
||||
* for all valid pointers if IGNORE_BITS is set correctly.
|
||||
*/
|
||||
#define HIGH_BITS(p) (AS_UINT(p) >> ADDRESS_BITS)
|
||||
#else
|
||||
#define HIGH_BITS(p) 0
|
||||
#endif
|
||||
|
||||
|
||||
/* This is the leaf of the radix tree. See arena_map_mark_used() for the
|
||||
* meaning of these members. */
|
||||
typedef struct {
|
||||
int32_t tail_hi;
|
||||
int32_t tail_lo;
|
||||
} arena_coverage_t;
|
||||
|
||||
typedef struct arena_map_bot {
|
||||
/* The members tail_hi and tail_lo are accessed together. So, it
|
||||
* better to have them as an array of structs, rather than two
|
||||
* arrays.
|
||||
*/
|
||||
arena_coverage_t arenas[MAP_BOT_LENGTH];
|
||||
} arena_map_bot_t;
|
||||
|
||||
#ifdef USE_INTERIOR_NODES
|
||||
typedef struct arena_map_mid {
|
||||
struct arena_map_bot *ptrs[MAP_MID_LENGTH];
|
||||
} arena_map_mid_t;
|
||||
|
||||
typedef struct arena_map_top {
|
||||
struct arena_map_mid *ptrs[MAP_TOP_LENGTH];
|
||||
} arena_map_top_t;
|
||||
#endif
|
||||
|
||||
struct _obmalloc_usage {
|
||||
/* The root of radix tree. Note that by initializing like this, the memory
|
||||
* should be in the BSS. The OS will only memory map pages as the MAP_MID
|
||||
* nodes get used (OS pages are demand loaded as needed).
|
||||
*/
|
||||
#ifdef USE_INTERIOR_NODES
|
||||
arena_map_top_t arena_map_root;
|
||||
/* accounting for number of used interior nodes */
|
||||
int arena_map_mid_count;
|
||||
int arena_map_bot_count;
|
||||
#else
|
||||
arena_map_bot_t arena_map_root;
|
||||
#endif
|
||||
};
|
||||
|
||||
#endif /* WITH_PYMALLOC_RADIX_TREE */
|
||||
|
||||
|
||||
struct _obmalloc_state {
|
||||
struct _obmalloc_pools pools;
|
||||
struct _obmalloc_mgmt mgmt;
|
||||
struct _obmalloc_usage usage;
|
||||
};
|
||||
|
||||
|
||||
#undef uint
|
||||
|
||||
|
||||
/* Allocate memory directly from the O/S virtual memory system,
|
||||
* where supported. Otherwise fallback on malloc */
|
||||
void *_PyObject_VirtualAlloc(size_t size);
|
||||
void _PyObject_VirtualFree(void *, size_t size);
|
||||
|
||||
|
||||
/* This function returns the number of allocated memory blocks, regardless of size */
|
||||
PyAPI_FUNC(Py_ssize_t) _Py_GetAllocatedBlocks(void);
|
||||
|
||||
|
||||
#ifdef WITH_PYMALLOC
|
||||
// Export the symbol for the 3rd party guppy3 project
|
||||
PyAPI_FUNC(int) _PyObject_DebugMallocStats(FILE *out);
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif // !Py_INTERNAL_OBMALLOC_H
|
|
@ -0,0 +1,68 @@
|
|||
#ifndef Py_INTERNAL_OBMALLOC_INIT_H
|
||||
#define Py_INTERNAL_OBMALLOC_INIT_H
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#ifndef Py_BUILD_CORE
|
||||
# error "this header requires Py_BUILD_CORE define"
|
||||
#endif
|
||||
|
||||
|
||||
/****************************************************/
|
||||
/* the default object allocator's state initializer */
|
||||
|
||||
#define PTA(pools, x) \
|
||||
((poolp )((uint8_t *)&(pools.used[2*(x)]) - 2*sizeof(pymem_block *)))
|
||||
#define PT(p, x) PTA(p, x), PTA(p, x)
|
||||
|
||||
#define PT_8(p, start) \
|
||||
PT(p, start), \
|
||||
PT(p, start+1), \
|
||||
PT(p, start+2), \
|
||||
PT(p, start+3), \
|
||||
PT(p, start+4), \
|
||||
PT(p, start+5), \
|
||||
PT(p, start+6), \
|
||||
PT(p, start+7)
|
||||
|
||||
#if NB_SMALL_SIZE_CLASSES <= 8
|
||||
# define _obmalloc_pools_INIT(p) \
|
||||
{ PT_8(p, 0) }
|
||||
#elif NB_SMALL_SIZE_CLASSES <= 16
|
||||
# define _obmalloc_pools_INIT(p) \
|
||||
{ PT_8(p, 0), PT_8(p, 8) }
|
||||
#elif NB_SMALL_SIZE_CLASSES <= 24
|
||||
# define _obmalloc_pools_INIT(p) \
|
||||
{ PT_8(p, 0), PT_8(p, 8), PT_8(p, 16) }
|
||||
#elif NB_SMALL_SIZE_CLASSES <= 32
|
||||
# define _obmalloc_pools_INIT(p) \
|
||||
{ PT_8(p, 0), PT_8(p, 8), PT_8(p, 16), PT_8(p, 24) }
|
||||
#elif NB_SMALL_SIZE_CLASSES <= 40
|
||||
# define _obmalloc_pools_INIT(p) \
|
||||
{ PT_8(p, 0), PT_8(p, 8), PT_8(p, 16), PT_8(p, 24), PT_8(p, 32) }
|
||||
#elif NB_SMALL_SIZE_CLASSES <= 48
|
||||
# define _obmalloc_pools_INIT(p) \
|
||||
{ PT_8(p, 0), PT_8(p, 8), PT_8(p, 16), PT_8(p, 24), PT_8(p, 32), PT_8(p, 40) }
|
||||
#elif NB_SMALL_SIZE_CLASSES <= 56
|
||||
# define _obmalloc_pools_INIT(p) \
|
||||
{ PT_8(p, 0), PT_8(p, 8), PT_8(p, 16), PT_8(p, 24), PT_8(p, 32), PT_8(p, 40), PT_8(p, 48) }
|
||||
#elif NB_SMALL_SIZE_CLASSES <= 64
|
||||
# define _obmalloc_pools_INIT(p) \
|
||||
{ PT_8(p, 0), PT_8(p, 8), PT_8(p, 16), PT_8(p, 24), PT_8(p, 32), PT_8(p, 40), PT_8(p, 48), PT_8(p, 56) }
|
||||
#else
|
||||
# error "NB_SMALL_SIZE_CLASSES should be less than 64"
|
||||
#endif
|
||||
|
||||
#define _obmalloc_state_INIT(obmalloc) \
|
||||
{ \
|
||||
.pools = { \
|
||||
.used = _obmalloc_pools_INIT(obmalloc.pools), \
|
||||
}, \
|
||||
}
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif // !Py_INTERNAL_OBMALLOC_INIT_H
|
|
@ -11,6 +11,27 @@ extern "C" {
|
|||
#include "pymem.h" // PyMemAllocatorName
|
||||
|
||||
|
||||
typedef struct {
|
||||
/* We tag each block with an API ID in order to tag API violations */
|
||||
char api_id;
|
||||
PyMemAllocatorEx alloc;
|
||||
} debug_alloc_api_t;
|
||||
|
||||
struct _pymem_allocators {
|
||||
struct {
|
||||
PyMemAllocatorEx raw;
|
||||
PyMemAllocatorEx mem;
|
||||
PyMemAllocatorEx obj;
|
||||
} standard;
|
||||
struct {
|
||||
debug_alloc_api_t raw;
|
||||
debug_alloc_api_t mem;
|
||||
debug_alloc_api_t obj;
|
||||
} debug;
|
||||
PyObjectArenaAllocator obj_arena;
|
||||
};
|
||||
|
||||
|
||||
/* Set the memory allocator of the specified domain to the default.
|
||||
Save the old allocator into *old_alloc if it's non-NULL.
|
||||
Return on success, or return -1 if the domain is unknown. */
|
||||
|
@ -94,20 +115,6 @@ struct _PyTraceMalloc_Config {
|
|||
|
||||
PyAPI_DATA(struct _PyTraceMalloc_Config) _Py_tracemalloc_config;
|
||||
|
||||
/* Allocate memory directly from the O/S virtual memory system,
|
||||
* where supported. Otherwise fallback on malloc */
|
||||
void *_PyObject_VirtualAlloc(size_t size);
|
||||
void _PyObject_VirtualFree(void *, size_t size);
|
||||
|
||||
/* This function returns the number of allocated memory blocks, regardless of size */
|
||||
PyAPI_FUNC(Py_ssize_t) _Py_GetAllocatedBlocks(void);
|
||||
|
||||
/* Macros */
|
||||
#ifdef WITH_PYMALLOC
|
||||
// Export the symbol for the 3rd party guppy3 project
|
||||
PyAPI_FUNC(int) _PyObject_DebugMallocStats(FILE *out);
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -0,0 +1,85 @@
|
|||
#ifndef Py_INTERNAL_PYMEM_INIT_H
|
||||
#define Py_INTERNAL_PYMEM_INIT_H
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#ifndef Py_BUILD_CORE
|
||||
# error "this header requires Py_BUILD_CORE define"
|
||||
#endif
|
||||
|
||||
#include "pycore_pymem.h"
|
||||
|
||||
|
||||
/********************************/
|
||||
/* the allocators' initializers */
|
||||
|
||||
extern void * _PyMem_RawMalloc(void *, size_t);
|
||||
extern void * _PyMem_RawCalloc(void *, size_t, size_t);
|
||||
extern void * _PyMem_RawRealloc(void *, void *, size_t);
|
||||
extern void _PyMem_RawFree(void *, void *);
|
||||
#define PYRAW_ALLOC {NULL, _PyMem_RawMalloc, _PyMem_RawCalloc, _PyMem_RawRealloc, _PyMem_RawFree}
|
||||
|
||||
#ifdef WITH_PYMALLOC
|
||||
extern void* _PyObject_Malloc(void *, size_t);
|
||||
extern void* _PyObject_Calloc(void *, size_t, size_t);
|
||||
extern void _PyObject_Free(void *, void *);
|
||||
extern void* _PyObject_Realloc(void *, void *, size_t);
|
||||
# define PYOBJ_ALLOC {NULL, _PyObject_Malloc, _PyObject_Calloc, _PyObject_Realloc, _PyObject_Free}
|
||||
#else
|
||||
# define PYOBJ_ALLOC PYRAW_ALLOC
|
||||
#endif // WITH_PYMALLOC
|
||||
|
||||
#define PYMEM_ALLOC PYOBJ_ALLOC
|
||||
|
||||
extern void* _PyMem_DebugRawMalloc(void *, size_t);
|
||||
extern void* _PyMem_DebugRawCalloc(void *, size_t, size_t);
|
||||
extern void* _PyMem_DebugRawRealloc(void *, void *, size_t);
|
||||
extern void _PyMem_DebugRawFree(void *, void *);
|
||||
|
||||
extern void* _PyMem_DebugMalloc(void *, size_t);
|
||||
extern void* _PyMem_DebugCalloc(void *, size_t, size_t);
|
||||
extern void* _PyMem_DebugRealloc(void *, void *, size_t);
|
||||
extern void _PyMem_DebugFree(void *, void *);
|
||||
|
||||
#define PYDBGRAW_ALLOC(runtime) \
|
||||
{&(runtime).allocators.debug.raw, _PyMem_DebugRawMalloc, _PyMem_DebugRawCalloc, _PyMem_DebugRawRealloc, _PyMem_DebugRawFree}
|
||||
#define PYDBGMEM_ALLOC(runtime) \
|
||||
{&(runtime).allocators.debug.mem, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree}
|
||||
#define PYDBGOBJ_ALLOC(runtime) \
|
||||
{&(runtime).allocators.debug.obj, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree}
|
||||
|
||||
extern void * _PyMem_ArenaAlloc(void *, size_t);
|
||||
extern void _PyMem_ArenaFree(void *, void *, size_t);
|
||||
|
||||
#ifdef Py_DEBUG
|
||||
# define _pymem_allocators_standard_INIT(runtime) \
|
||||
{ \
|
||||
PYDBGRAW_ALLOC(runtime), \
|
||||
PYDBGMEM_ALLOC(runtime), \
|
||||
PYDBGOBJ_ALLOC(runtime), \
|
||||
}
|
||||
#else
|
||||
# define _pymem_allocators_standard_INIT(runtime) \
|
||||
{ \
|
||||
PYRAW_ALLOC, \
|
||||
PYMEM_ALLOC, \
|
||||
PYOBJ_ALLOC, \
|
||||
}
|
||||
#endif
|
||||
|
||||
#define _pymem_allocators_debug_INIT \
|
||||
{ \
|
||||
{'r', PYRAW_ALLOC}, \
|
||||
{'m', PYMEM_ALLOC}, \
|
||||
{'o', PYOBJ_ALLOC}, \
|
||||
}
|
||||
|
||||
# define _pymem_allocators_obj_arena_INIT \
|
||||
{ NULL, _PyMem_ArenaAlloc, _PyMem_ArenaFree }
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif // !Py_INTERNAL_PYMEM_INIT_H
|
|
@ -13,6 +13,8 @@ extern "C" {
|
|||
#include "pycore_global_objects.h" // struct _Py_global_objects
|
||||
#include "pycore_import.h" // struct _import_runtime_state
|
||||
#include "pycore_interp.h" // PyInterpreterState
|
||||
#include "pycore_pymem.h" // struct _pymem_allocators
|
||||
#include "pycore_obmalloc.h" // struct obmalloc_state
|
||||
#include "pycore_unicodeobject.h" // struct _Py_unicode_runtime_ids
|
||||
|
||||
struct _getargs_runtime_state {
|
||||
|
@ -86,6 +88,9 @@ typedef struct pyruntimestate {
|
|||
to access it, don't access it directly. */
|
||||
_Py_atomic_address _finalizing;
|
||||
|
||||
struct _pymem_allocators allocators;
|
||||
struct _obmalloc_state obmalloc;
|
||||
|
||||
struct pyinterpreters {
|
||||
PyThread_type_lock mutex;
|
||||
/* The linked list of interpreters, newest first. */
|
||||
|
|
|
@ -9,13 +9,15 @@ extern "C" {
|
|||
#endif
|
||||
|
||||
#include "pycore_object.h"
|
||||
#include "pycore_pymem_init.h"
|
||||
#include "pycore_obmalloc_init.h"
|
||||
|
||||
|
||||
/* The static initializers defined here should only be used
|
||||
in the runtime init code (in pystate.c and pylifecycle.c). */
|
||||
|
||||
|
||||
#define _PyRuntimeState_INIT \
|
||||
#define _PyRuntimeState_INIT(runtime) \
|
||||
{ \
|
||||
.gilstate = { \
|
||||
.check_enabled = 1, \
|
||||
|
@ -23,6 +25,12 @@ extern "C" {
|
|||
in accordance with the specification. */ \
|
||||
.autoTSSkey = Py_tss_NEEDS_INIT, \
|
||||
}, \
|
||||
.allocators = { \
|
||||
_pymem_allocators_standard_INIT(runtime), \
|
||||
_pymem_allocators_debug_INIT, \
|
||||
_pymem_allocators_obj_arena_INIT, \
|
||||
}, \
|
||||
.obmalloc = _obmalloc_state_INIT(runtime.obmalloc), \
|
||||
.interpreters = { \
|
||||
/* This prevents interpreters from getting created \
|
||||
until _PyInterpreterState_Enable() is called. */ \
|
||||
|
|
|
@ -1650,12 +1650,15 @@ PYTHON_HEADERS= \
|
|||
$(srcdir)/Include/internal/pycore_moduleobject.h \
|
||||
$(srcdir)/Include/internal/pycore_namespace.h \
|
||||
$(srcdir)/Include/internal/pycore_object.h \
|
||||
$(srcdir)/Include/internal/pycore_obmalloc.h \
|
||||
$(srcdir)/Include/internal/pycore_obmalloc_init.h \
|
||||
$(srcdir)/Include/internal/pycore_pathconfig.h \
|
||||
$(srcdir)/Include/internal/pycore_pyarena.h \
|
||||
$(srcdir)/Include/internal/pycore_pyerrors.h \
|
||||
$(srcdir)/Include/internal/pycore_pyhash.h \
|
||||
$(srcdir)/Include/internal/pycore_pylifecycle.h \
|
||||
$(srcdir)/Include/internal/pycore_pymem.h \
|
||||
$(srcdir)/Include/internal/pycore_pymem_init.h \
|
||||
$(srcdir)/Include/internal/pycore_pystate.h \
|
||||
$(srcdir)/Include/internal/pycore_range.h \
|
||||
$(srcdir)/Include/internal/pycore_runtime.h \
|
||||
|
|
|
@ -0,0 +1,3 @@
|
|||
The 18 global C variables holding the state of the allocators have been
|
||||
moved to ``_PyRuntimeState``. This is a strictly internal change with no
|
||||
change in behavior.
|
1120
Objects/obmalloc.c
1120
Objects/obmalloc.c
File diff suppressed because it is too large
Load Diff
|
@ -231,12 +231,15 @@
|
|||
<ClInclude Include="..\Include\internal\pycore_moduleobject.h" />
|
||||
<ClInclude Include="..\Include\internal\pycore_namespace.h" />
|
||||
<ClInclude Include="..\Include\internal\pycore_object.h" />
|
||||
<ClInclude Include="..\Include\internal\pycore_obmalloc.h" />
|
||||
<ClInclude Include="..\Include\internal\pycore_obmalloc_init.h" />
|
||||
<ClInclude Include="..\Include\internal\pycore_pathconfig.h" />
|
||||
<ClInclude Include="..\Include\internal\pycore_pyarena.h" />
|
||||
<ClInclude Include="..\Include\internal\pycore_pyerrors.h" />
|
||||
<ClInclude Include="..\Include\internal\pycore_pyhash.h" />
|
||||
<ClInclude Include="..\Include\internal\pycore_pylifecycle.h" />
|
||||
<ClInclude Include="..\Include\internal\pycore_pymem.h" />
|
||||
<ClInclude Include="..\Include\internal\pycore_pymem_init.h" />
|
||||
<ClInclude Include="..\Include\internal\pycore_pystate.h" />
|
||||
<ClInclude Include="..\Include\internal\pycore_range.h" />
|
||||
<ClInclude Include="..\Include\internal\pycore_runtime.h" />
|
||||
|
|
|
@ -597,6 +597,12 @@
|
|||
<ClInclude Include="..\Include\internal\pycore_object.h">
|
||||
<Filter>Include\internal</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="..\Include\internal\pycore_obmalloc.h">
|
||||
<Filter>Include\internal</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="..\Include\internal\pycore_obmalloc_init.h">
|
||||
<Filter>Include\internal</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="..\Include\internal\pycore_pathconfig.h">
|
||||
<Filter>Include\internal</Filter>
|
||||
</ClInclude>
|
||||
|
@ -615,6 +621,9 @@
|
|||
<ClInclude Include="..\Include\internal\pycore_pymem.h">
|
||||
<Filter>Include\internal</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="..\Include\internal\pycore_pymem_init.h">
|
||||
<Filter>Include\internal</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="..\Include\internal\pycore_pystate.h">
|
||||
<Filter>Include\internal</Filter>
|
||||
</ClInclude>
|
||||
|
|
|
@ -104,7 +104,7 @@ _PyRuntimeState _PyRuntime
|
|||
#if defined(__linux__) && (defined(__GNUC__) || defined(__clang__))
|
||||
__attribute__ ((section (".PyRuntime")))
|
||||
#endif
|
||||
= _PyRuntimeState_INIT;
|
||||
= _PyRuntimeState_INIT(_PyRuntime);
|
||||
_Py_COMP_DIAG_POP
|
||||
|
||||
static int runtime_initialized = 0;
|
||||
|
|
|
@ -51,8 +51,11 @@ static void _PyThreadState_Delete(PyThreadState *tstate, int check_current);
|
|||
_Py_COMP_DIAG_PUSH
|
||||
_Py_COMP_DIAG_IGNORE_DEPR_DECLS
|
||||
/* We use "initial" if the runtime gets re-used
|
||||
(e.g. Py_Finalize() followed by Py_Initialize(). */
|
||||
static const _PyRuntimeState initial = _PyRuntimeState_INIT;
|
||||
(e.g. Py_Finalize() followed by Py_Initialize().
|
||||
Note that we initialize "initial" relative to _PyRuntime,
|
||||
to ensure pre-initialized pointers point to the active
|
||||
runtime state (and not "initial"). */
|
||||
static const _PyRuntimeState initial = _PyRuntimeState_INIT(_PyRuntime);
|
||||
_Py_COMP_DIAG_POP
|
||||
|
||||
static int
|
||||
|
|
|
@ -415,21 +415,8 @@ Python/pathconfig.c - _Py_path_config -
|
|||
#-----------------------
|
||||
# state
|
||||
|
||||
# allocator
|
||||
Objects/obmalloc.c - _PyObject_Arena -
|
||||
# object allocator
|
||||
Objects/obmalloc.c - _Py_tracemalloc_config -
|
||||
Objects/obmalloc.c - arena_map_bot_count -
|
||||
Objects/obmalloc.c - arena_map_mid_count -
|
||||
Objects/obmalloc.c - arena_map_root -
|
||||
Objects/obmalloc.c - arenas -
|
||||
Objects/obmalloc.c - maxarenas -
|
||||
Objects/obmalloc.c - narenas_currently_allocated -
|
||||
Objects/obmalloc.c - narenas_highwater -
|
||||
Objects/obmalloc.c - nfp2lasta -
|
||||
Objects/obmalloc.c - ntimes_arena_allocated -
|
||||
Objects/obmalloc.c - raw_allocated_blocks -
|
||||
Objects/obmalloc.c - unused_arena_objects -
|
||||
Objects/obmalloc.c - usable_arenas -
|
||||
Objects/obmalloc.c new_arena debug_stats -
|
||||
|
||||
# pre-allocated memory
|
||||
|
|
Can't render this file because it has a wrong number of fields in line 4.
|
Loading…
Reference in New Issue