cpython/Doc/howto/sorting.rst

352 lines
12 KiB
ReStructuredText
Raw Normal View History

.. _sortinghowto:
2010-09-01 06:15:42 -03:00
Sorting HOW TO
**************
:Author: Andrew Dalke and Raymond Hettinger
:Release: 0.1
2010-09-01 06:15:42 -03:00
Python lists have a built-in :meth:`list.sort` method that modifies the list
2011-01-12 00:44:41 -04:00
in-place. There is also a :func:`sorted` built-in function that builds a new
sorted list from an iterable.
2010-09-01 06:15:42 -03:00
In this document, we explore the various techniques for sorting data using Python.
Sorting Basics
==============
A simple ascending sort is very easy: just call the :func:`sorted` function. It
2021-04-19 18:12:36 -03:00
returns a new sorted list:
.. doctest::
2010-09-01 06:15:42 -03:00
>>> sorted([5, 2, 3, 1, 4])
[1, 2, 3, 4, 5]
You can also use the :meth:`list.sort` method. It modifies the list
in-place (and returns ``None`` to avoid confusion). Usually it's less convenient
2010-09-01 06:15:42 -03:00
than :func:`sorted` - but if you don't need the original list, it's slightly
more efficient.
2021-04-19 18:12:36 -03:00
.. doctest::
2010-09-01 06:15:42 -03:00
>>> a = [5, 2, 3, 1, 4]
>>> a.sort()
>>> a
[1, 2, 3, 4, 5]
Another difference is that the :meth:`list.sort` method is only defined for
lists. In contrast, the :func:`sorted` function accepts any iterable.
2021-04-19 18:12:36 -03:00
.. doctest::
2010-09-01 06:15:42 -03:00
>>> sorted({1: 'D', 2: 'B', 3: 'B', 4: 'E', 5: 'A'})
[1, 2, 3, 4, 5]
Key Functions
=============
2012-04-29 13:32:30 -03:00
Both :meth:`list.sort` and :func:`sorted` have a *key* parameter to specify a
function (or other callable) to be called on each list element prior to making
comparisons.
2010-09-01 06:15:42 -03:00
For example, here's a case-insensitive string comparison:
2021-04-19 18:12:36 -03:00
.. doctest::
2010-09-01 06:15:42 -03:00
>>> sorted("This is a test string from Andrew".split(), key=str.lower)
['a', 'Andrew', 'from', 'is', 'string', 'test', 'This']
The value of the *key* parameter should be a function (or other callable) that
takes a single argument and returns a key to use for sorting purposes. This
technique is fast because the key function is called exactly once for each
input record.
2010-09-01 06:15:42 -03:00
A common pattern is to sort complex objects using some of the object's indices
as keys. For example:
2021-04-19 18:12:36 -03:00
.. doctest::
2010-09-01 06:15:42 -03:00
>>> student_tuples = [
... ('john', 'A', 15),
... ('jane', 'B', 12),
... ('dave', 'B', 10),
... ]
2010-09-01 06:15:42 -03:00
>>> sorted(student_tuples, key=lambda student: student[2]) # sort by age
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
The same technique works for objects with named attributes. For example:
2021-04-19 18:12:36 -03:00
.. doctest::
2010-09-01 06:15:42 -03:00
>>> class Student:
... def __init__(self, name, grade, age):
... self.name = name
... self.grade = grade
... self.age = age
... def __repr__(self):
... return repr((self.name, self.grade, self.age))
2010-09-01 06:15:42 -03:00
>>> student_objects = [
... Student('john', 'A', 15),
... Student('jane', 'B', 12),
... Student('dave', 'B', 10),
... ]
2010-09-01 06:15:42 -03:00
>>> sorted(student_objects, key=lambda student: student.age) # sort by age
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
Operator Module Functions
=========================
The key-function patterns shown above are very common, so Python provides
convenience functions to make accessor functions easier and faster. The
:mod:`operator` module has :func:`~operator.itemgetter`,
2012-04-29 13:32:30 -03:00
:func:`~operator.attrgetter`, and a :func:`~operator.methodcaller` function.
2010-09-01 06:15:42 -03:00
Using those functions, the above examples become simpler and faster:
2021-04-19 18:12:36 -03:00
.. doctest::
2010-09-01 06:15:42 -03:00
>>> from operator import itemgetter, attrgetter
>>> sorted(student_tuples, key=itemgetter(2))
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
>>> sorted(student_objects, key=attrgetter('age'))
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
The operator module functions allow multiple levels of sorting. For example, to
sort by *grade* then by *age*:
2021-04-19 18:12:36 -03:00
.. doctest::
2010-09-01 06:15:42 -03:00
>>> sorted(student_tuples, key=itemgetter(1,2))
[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]
>>> sorted(student_objects, key=attrgetter('grade', 'age'))
[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]
Ascending and Descending
========================
Both :meth:`list.sort` and :func:`sorted` accept a *reverse* parameter with a
2012-04-29 13:32:30 -03:00
boolean value. This is used to flag descending sorts. For example, to get the
2010-09-01 06:15:42 -03:00
student data in reverse *age* order:
2021-04-19 18:12:36 -03:00
.. doctest::
2010-09-01 06:15:42 -03:00
>>> sorted(student_tuples, key=itemgetter(2), reverse=True)
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
>>> sorted(student_objects, key=attrgetter('age'), reverse=True)
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
Sort Stability and Complex Sorts
================================
Sorts are guaranteed to be `stable
<https://en.wikipedia.org/wiki/Sorting_algorithm#Stability>`_\. That means that
2010-09-01 06:15:42 -03:00
when multiple records have the same key, their original order is preserved.
2021-04-19 18:12:36 -03:00
.. doctest::
2010-09-01 06:15:42 -03:00
>>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]
>>> sorted(data, key=itemgetter(0))
[('blue', 1), ('blue', 2), ('red', 1), ('red', 2)]
Notice how the two records for *blue* retain their original order so that
``('blue', 1)`` is guaranteed to precede ``('blue', 2)``.
This wonderful property lets you build complex sorts in a series of sorting
steps. For example, to sort the student data by descending *grade* and then
ascending *age*, do the *age* sort first and then sort again using *grade*:
2021-04-19 18:12:36 -03:00
.. doctest::
2010-09-01 06:15:42 -03:00
>>> s = sorted(student_objects, key=attrgetter('age')) # sort on secondary key
>>> sorted(s, key=attrgetter('grade'), reverse=True) # now sort on primary key, descending
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
This can be abstracted out into a wrapper function that can take a list and
tuples of field and order to sort them on multiple passes.
2021-04-19 18:12:36 -03:00
.. doctest::
>>> def multisort(xs, specs):
... for key, reverse in reversed(specs):
... xs.sort(key=attrgetter(key), reverse=reverse)
... return xs
>>> multisort(list(student_objects), (('grade', True), ('age', False)))
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
The `Timsort <https://en.wikipedia.org/wiki/Timsort>`_ algorithm used in Python
2010-09-01 06:15:42 -03:00
does multiple sorts efficiently because it can take advantage of any ordering
already present in a dataset.
The Old Way Using Decorate-Sort-Undecorate
==========================================
This idiom is called Decorate-Sort-Undecorate after its three steps:
* First, the initial list is decorated with new values that control the sort order.
* Second, the decorated list is sorted.
* Finally, the decorations are removed, creating a list that contains only the
initial values in the new order.
For example, to sort the student data by *grade* using the DSU approach:
>>> decorated = [(student.grade, i, student) for i, student in enumerate(student_objects)]
>>> decorated.sort()
>>> [student for grade, i, student in decorated] # undecorate
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
This idiom works because tuples are compared lexicographically; the first items
are compared; if they are the same then the second items are compared, and so
on.
It is not strictly necessary in all cases to include the index *i* in the
decorated list, but including it gives two benefits:
* The sort is stable -- if two items have the same key, their order will be
preserved in the sorted list.
* The original items do not have to be comparable because the ordering of the
decorated tuples will be determined by at most the first two items. So for
example the original list could contain complex numbers which cannot be sorted
directly.
Another name for this idiom is
`Schwartzian transform <https://en.wikipedia.org/wiki/Schwartzian_transform>`_\,
2010-09-01 06:15:42 -03:00
after Randal L. Schwartz, who popularized it among Perl programmers.
Now that Python sorting provides key-functions, this technique is not often needed.
The Old Way Using the *cmp* Parameter
=====================================
Many constructs given in this HOWTO assume Python 2.4 or later. Before that,
there was no :func:`sorted` builtin and :meth:`list.sort` took no keyword
arguments. Instead, all of the Py2.x versions supported a *cmp* parameter to
handle user specified comparison functions.
In Py3.0, the *cmp* parameter was removed entirely (as part of a larger effort to
simplify and unify the language, eliminating the conflict between rich
comparisons and the :meth:`__cmp__` magic method).
In Py2.x, sort allowed an optional function which can be called for doing the
comparisons. That function should take two arguments to be compared and then
return a negative value for less-than, return zero if they are equal, or return
a positive value for greater-than. For example, we can do:
2021-04-19 18:12:36 -03:00
.. doctest::
2010-09-01 06:15:42 -03:00
>>> def numeric_compare(x, y):
... return x - y
>>> sorted([5, 2, 4, 1, 3], cmp=numeric_compare) # doctest: +SKIP
2010-09-01 06:15:42 -03:00
[1, 2, 3, 4, 5]
Or you can reverse the order of comparison with:
2021-04-19 18:12:36 -03:00
.. doctest::
2010-09-01 06:15:42 -03:00
>>> def reverse_numeric(x, y):
... return y - x
>>> sorted([5, 2, 4, 1, 3], cmp=reverse_numeric) # doctest: +SKIP
2010-09-01 06:15:42 -03:00
[5, 4, 3, 2, 1]
When porting code from Python 2.x to 3.x, the situation can arise when you have
the user supplying a comparison function and you need to convert that to a key
2021-04-19 18:12:36 -03:00
function. The following wrapper makes that easy to do:
.. testcode::
def cmp_to_key(mycmp):
'Convert a cmp= function into a key= function'
class K:
def __init__(self, obj, *args):
self.obj = obj
def __lt__(self, other):
return mycmp(self.obj, other.obj) < 0
def __gt__(self, other):
return mycmp(self.obj, other.obj) > 0
def __eq__(self, other):
return mycmp(self.obj, other.obj) == 0
def __le__(self, other):
return mycmp(self.obj, other.obj) <= 0
def __ge__(self, other):
return mycmp(self.obj, other.obj) >= 0
def __ne__(self, other):
return mycmp(self.obj, other.obj) != 0
return K
2010-09-01 06:15:42 -03:00
2021-04-19 18:12:36 -03:00
.. doctest::
:hide:
>>> sorted([5, 2, 4, 1, 3], key=cmp_to_key(reverse_numeric))
[5, 4, 3, 2, 1]
2010-09-01 06:15:42 -03:00
To convert to a key function, just wrap the old comparison function:
.. testsetup::
from functools import cmp_to_key
.. doctest::
2010-09-01 06:15:42 -03:00
>>> sorted([5, 2, 4, 1, 3], key=cmp_to_key(reverse_numeric))
[5, 4, 3, 2, 1]
In Python 3.2, the :func:`functools.cmp_to_key` function was added to the
:mod:`functools` module in the standard library.
2010-09-01 06:15:42 -03:00
Odds and Ends
=============
2010-09-01 06:15:42 -03:00
* For locale aware sorting, use :func:`locale.strxfrm` for a key function or
:func:`locale.strcoll` for a comparison function.
* The *reverse* parameter still maintains sort stability (so that records with
2010-09-01 06:15:42 -03:00
equal keys retain the original order). Interestingly, that effect can be
simulated without the parameter by using the builtin :func:`reversed` function
twice:
2021-04-19 18:12:36 -03:00
.. doctest::
2010-09-01 06:15:42 -03:00
>>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]
>>> standard_way = sorted(data, key=itemgetter(0), reverse=True)
>>> double_reversed = list(reversed(sorted(reversed(data), key=itemgetter(0))))
>>> assert standard_way == double_reversed
>>> standard_way
[('red', 1), ('red', 2), ('blue', 1), ('blue', 2)]
2010-09-01 06:15:42 -03:00
* The sort routines use ``<`` when making comparisons
2010-09-01 06:15:42 -03:00
between two objects. So, it is easy to add a standard sort order to a class by
2021-04-19 18:12:36 -03:00
defining an :meth:`__lt__` method:
.. doctest::
2010-09-01 06:15:42 -03:00
>>> Student.__lt__ = lambda self, other: self.age < other.age
>>> sorted(student_objects)
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
However, note that ``<`` can fall back to using :meth:`__gt__` if
:meth:`__lt__` is not implemented (see :func:`object.__lt__`).
2010-09-01 06:15:42 -03:00
* Key functions need not depend directly on the objects being sorted. A key
function can also access external resources. For instance, if the student grades
are stored in a dictionary, they can be used to sort a separate list of student
names:
2021-04-19 18:12:36 -03:00
.. doctest::
2010-09-01 06:15:42 -03:00
>>> students = ['dave', 'john', 'jane']
>>> newgrades = {'john': 'F', 'jane':'A', 'dave': 'C'}
>>> sorted(students, key=newgrades.__getitem__)
['jane', 'dave', 'john']