mirror of https://github.com/python/cpython
Forward port sorting howto
This commit is contained in:
parent
9707fd2ec0
commit
53c58f8bcc
|
@ -21,6 +21,7 @@ Currently, the HOWTOs are:
|
|||
functional.rst
|
||||
regex.rst
|
||||
sockets.rst
|
||||
sorting.rst
|
||||
unicode.rst
|
||||
urllib2.rst
|
||||
webservers.rst
|
||||
|
|
|
@ -0,0 +1,281 @@
|
|||
Sorting HOW TO
|
||||
**************
|
||||
|
||||
:Author: Andrew Dalke and Raymond Hettinger
|
||||
:Release: 0.1
|
||||
|
||||
|
||||
Python lists have a built-in :meth:`list.sort` method that modifies the list
|
||||
in-place and a :func:`sorted` built-in function that builds a new sorted list
|
||||
from an iterable.
|
||||
|
||||
In this document, we explore the various techniques for sorting data using Python.
|
||||
|
||||
|
||||
Sorting Basics
|
||||
==============
|
||||
|
||||
A simple ascending sort is very easy: just call the :func:`sorted` function. It
|
||||
returns a new sorted list::
|
||||
|
||||
>>> sorted([5, 2, 3, 1, 4])
|
||||
[1, 2, 3, 4, 5]
|
||||
|
||||
You can also use the :meth:`list.sort` method of a list. It modifies the list
|
||||
in-place (and returns *None* to avoid confusion). Usually it's less convenient
|
||||
than :func:`sorted` - but if you don't need the original list, it's slightly
|
||||
more efficient.
|
||||
|
||||
>>> a = [5, 2, 3, 1, 4]
|
||||
>>> a.sort()
|
||||
>>> a
|
||||
[1, 2, 3, 4, 5]
|
||||
|
||||
Another difference is that the :meth:`list.sort` method is only defined for
|
||||
lists. In contrast, the :func:`sorted` function accepts any iterable.
|
||||
|
||||
>>> sorted({1: 'D', 2: 'B', 3: 'B', 4: 'E', 5: 'A'})
|
||||
[1, 2, 3, 4, 5]
|
||||
|
||||
Key Functions
|
||||
=============
|
||||
|
||||
Both :meth:`list.sort` and :func:`sorted` have *key* parameter to specify a
|
||||
function to be called on each list element prior to making comparisons.
|
||||
|
||||
For example, here's a case-insensitive string comparison:
|
||||
|
||||
>>> sorted("This is a test string from Andrew".split(), key=str.lower)
|
||||
['a', 'Andrew', 'from', 'is', 'string', 'test', 'This']
|
||||
|
||||
The value of the *key* parameter should be a function that takes a single argument
|
||||
and returns a key to use for sorting purposes. This technique is fast because
|
||||
the key function is called exactly once for each input record.
|
||||
|
||||
A common pattern is to sort complex objects using some of the object's indices
|
||||
as keys. For example:
|
||||
|
||||
>>> student_tuples = [
|
||||
('john', 'A', 15),
|
||||
('jane', 'B', 12),
|
||||
('dave', 'B', 10),
|
||||
]
|
||||
>>> sorted(student_tuples, key=lambda student: student[2]) # sort by age
|
||||
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
|
||||
|
||||
The same technique works for objects with named attributes. For example:
|
||||
|
||||
>>> class Student:
|
||||
def __init__(self, name, grade, age):
|
||||
self.name = name
|
||||
self.grade = grade
|
||||
self.age = age
|
||||
def __repr__(self):
|
||||
return repr((self.name, self.grade, self.age))
|
||||
|
||||
>>> student_objects = [
|
||||
Student('john', 'A', 15),
|
||||
Student('jane', 'B', 12),
|
||||
Student('dave', 'B', 10),
|
||||
]
|
||||
>>> sorted(student_objects, key=lambda student: student.age) # sort by age
|
||||
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
|
||||
|
||||
Operator Module Functions
|
||||
=========================
|
||||
|
||||
The key-function patterns shown above are very common, so Python provides
|
||||
convenience functions to make accessor functions easier and faster. The operator
|
||||
module has :func:`operator.itemgetter`, :func:`operator.attrgetter`, and
|
||||
an :func:`operator.methodcaller` function.
|
||||
|
||||
Using those functions, the above examples become simpler and faster:
|
||||
|
||||
>>> from operator import itemgetter, attrgetter
|
||||
|
||||
>>> sorted(student_tuples, key=itemgetter(2))
|
||||
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
|
||||
|
||||
>>> sorted(student_objects, key=attrgetter('age'))
|
||||
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
|
||||
|
||||
The operator module functions allow multiple levels of sorting. For example, to
|
||||
sort by *grade* then by *age*:
|
||||
|
||||
>>> sorted(student_tuples, key=itemgetter(1,2))
|
||||
[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]
|
||||
|
||||
>>> sorted(student_objects, key=attrgetter('grade', 'age'))
|
||||
[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]
|
||||
|
||||
Ascending and Descending
|
||||
========================
|
||||
|
||||
Both :meth:`list.sort` and :func:`sorted` accept a *reverse* parameter with a
|
||||
boolean value. This is using to flag descending sorts. For example, to get the
|
||||
student data in reverse *age* order:
|
||||
|
||||
>>> sorted(student_tuples, key=itemgetter(2), reverse=True)
|
||||
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
|
||||
|
||||
>>> sorted(student_objects, key=attrgetter('age'), reverse=True)
|
||||
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
|
||||
|
||||
Sort Stability and Complex Sorts
|
||||
================================
|
||||
|
||||
Sorts are guaranteed to be `stable
|
||||
<http://en.wikipedia.org/wiki/Sorting_algorithm#Stability>`_\. That means that
|
||||
when multiple records have the same key, their original order is preserved.
|
||||
|
||||
>>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]
|
||||
>>> sorted(data, key=itemgetter(0))
|
||||
[('blue', 1), ('blue', 2), ('red', 1), ('red', 2)]
|
||||
|
||||
Notice how the two records for *blue* retain their original order so that
|
||||
``('blue', 1)`` is guaranteed to precede ``('blue', 2)``.
|
||||
|
||||
This wonderful property lets you build complex sorts in a series of sorting
|
||||
steps. For example, to sort the student data by descending *grade* and then
|
||||
ascending *age*, do the *age* sort first and then sort again using *grade*:
|
||||
|
||||
>>> s = sorted(student_objects, key=attrgetter('age')) # sort on secondary key
|
||||
>>> sorted(s, key=attrgetter('grade'), reverse=True) # now sort on primary key, descending
|
||||
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
|
||||
|
||||
The `Timsort <http://en.wikipedia.org/wiki/Timsort>`_ algorithm used in Python
|
||||
does multiple sorts efficiently because it can take advantage of any ordering
|
||||
already present in a dataset.
|
||||
|
||||
The Old Way Using Decorate-Sort-Undecorate
|
||||
==========================================
|
||||
|
||||
This idiom is called Decorate-Sort-Undecorate after its three steps:
|
||||
|
||||
* First, the initial list is decorated with new values that control the sort order.
|
||||
|
||||
* Second, the decorated list is sorted.
|
||||
|
||||
* Finally, the decorations are removed, creating a list that contains only the
|
||||
initial values in the new order.
|
||||
|
||||
For example, to sort the student data by *grade* using the DSU approach:
|
||||
|
||||
>>> decorated = [(student.grade, i, student) for i, student in enumerate(student_objects)]
|
||||
>>> decorated.sort()
|
||||
>>> [student for grade, i, student in decorated] # undecorate
|
||||
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
|
||||
|
||||
This idiom works because tuples are compared lexicographically; the first items
|
||||
are compared; if they are the same then the second items are compared, and so
|
||||
on.
|
||||
|
||||
It is not strictly necessary in all cases to include the index *i* in the
|
||||
decorated list, but including it gives two benefits:
|
||||
|
||||
* The sort is stable -- if two items have the same key, their order will be
|
||||
preserved in the sorted list.
|
||||
|
||||
* The original items do not have to be comparable because the ordering of the
|
||||
decorated tuples will be determined by at most the first two items. So for
|
||||
example the original list could contain complex numbers which cannot be sorted
|
||||
directly.
|
||||
|
||||
Another name for this idiom is
|
||||
`Schwartzian transform <http://en.wikipedia.org/wiki/Schwartzian_transform>`_\,
|
||||
after Randal L. Schwartz, who popularized it among Perl programmers.
|
||||
|
||||
Now that Python sorting provides key-functions, this technique is not often needed.
|
||||
|
||||
|
||||
The Old Way Using the *cmp* Parameter
|
||||
=====================================
|
||||
|
||||
Many constructs given in this HOWTO assume Python 2.4 or later. Before that,
|
||||
there was no :func:`sorted` builtin and :meth:`list.sort` took no keyword
|
||||
arguments. Instead, all of the Py2.x versions supported a *cmp* parameter to
|
||||
handle user specified comparison functions.
|
||||
|
||||
In Py3.0, the *cmp* parameter was removed entirely (as part of a larger effort to
|
||||
simplify and unify the language, eliminating the conflict between rich
|
||||
comparisons and the :meth:`__cmp__` magic method).
|
||||
|
||||
In Py2.x, sort allowed an optional function which can be called for doing the
|
||||
comparisons. That function should take two arguments to be compared and then
|
||||
return a negative value for less-than, return zero if they are equal, or return
|
||||
a positive value for greater-than. For example, we can do:
|
||||
|
||||
>>> def numeric_compare(x, y):
|
||||
return x - y
|
||||
>>> sorted([5, 2, 4, 1, 3], cmp=numeric_compare)
|
||||
[1, 2, 3, 4, 5]
|
||||
|
||||
Or you can reverse the order of comparison with:
|
||||
|
||||
>>> def reverse_numeric(x, y):
|
||||
return y - x
|
||||
>>> sorted([5, 2, 4, 1, 3], cmp=reverse_numeric)
|
||||
[5, 4, 3, 2, 1]
|
||||
|
||||
When porting code from Python 2.x to 3.x, the situation can arise when you have
|
||||
the user supplying a comparison function and you need to convert that to a key
|
||||
function. The following wrapper makes that easy to do::
|
||||
|
||||
def cmp_to_key(mycmp):
|
||||
'Convert a cmp= function into a key= function'
|
||||
class K(object):
|
||||
def __init__(self, obj, *args):
|
||||
self.obj = obj
|
||||
def __lt__(self, other):
|
||||
return mycmp(self.obj, other.obj) < 0
|
||||
def __gt__(self, other):
|
||||
return mycmp(self.obj, other.obj) > 0
|
||||
def __eq__(self, other):
|
||||
return mycmp(self.obj, other.obj) == 0
|
||||
def __le__(self, other):
|
||||
return mycmp(self.obj, other.obj) <= 0
|
||||
def __ge__(self, other):
|
||||
return mycmp(self.obj, other.obj) >= 0
|
||||
def __ne__(self, other):
|
||||
return mycmp(self.obj, other.obj) != 0
|
||||
return K
|
||||
|
||||
To convert to a key function, just wrap the old comparison function:
|
||||
|
||||
>>> sorted([5, 2, 4, 1, 3], key=cmp_to_key(reverse_numeric))
|
||||
[5, 4, 3, 2, 1]
|
||||
|
||||
In Python 3.2, the :func:`functools.cmp_to_key` function was added to the
|
||||
functools module in the standard library.
|
||||
|
||||
Odd and Ends
|
||||
============
|
||||
|
||||
* For locale aware sorting, use :func:`locale.strxfrm` for a key function or
|
||||
:func:`locale.strcoll` for a comparison function.
|
||||
|
||||
* The *reverse* parameter still maintains sort stability (i.e. records with
|
||||
equal keys retain the original order). Interestingly, that effect can be
|
||||
simulated without the parameter by using the builtin :func:`reversed` function
|
||||
twice:
|
||||
|
||||
>>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]
|
||||
>>> assert sorted(data, reverse=True) == list(reversed(sorted(reversed(data))))
|
||||
|
||||
* The sort routines are guaranteed to use :meth:`__lt__` when making comparisons
|
||||
between two objects. So, it is easy to add a standard sort order to a class by
|
||||
defining an :meth:`__lt__` method::
|
||||
|
||||
>>> Student.__lt__ = lambda self, other: self.age < other.age
|
||||
>>> sorted(student_objects)
|
||||
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
|
||||
|
||||
* Key functions need not depend directly on the objects being sorted. A key
|
||||
function can also access external resources. For instance, if the student grades
|
||||
are stored in a dictionary, they can be used to sort a separate list of student
|
||||
names:
|
||||
|
||||
>>> students = ['dave', 'john', 'jane']
|
||||
>>> newgrades = {'john': 'F', 'jane':'A', 'dave': 'C'}
|
||||
>>> sorted(students, key=newgrades.__getitem__)
|
||||
['jane', 'dave', 'john']
|
Loading…
Reference in New Issue