ardupilot/ArduPlane/GCS_Mavlink.pde
Andrew Tridgell feca411943 Plane: added new TRAINING mode
this mode gives manual control when the roll or pitch is within the
set limits (the same limits as FBW mode), and prevents the pilot from
flying beyond those limits, essentially a "attitude limited manual"
mode
2012-12-20 22:41:58 +11:00

2100 lines
63 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// use this to prevent recursion during sensor init
static bool in_mavlink_delay;
// true when we have received at least 1 MAVLink packet
static bool mavlink_active;
// check if a message will fit in the payload space available
#define CHECK_PAYLOAD_SIZE(id) if (payload_space < MAVLINK_MSG_ID_ ## id ## _LEN) return false
// prototype this for use inside the GCS class
void gcs_send_text_fmt(const prog_char_t *fmt, ...);
/*
* !!NOTE!!
*
* the use of NOINLINE separate functions for each message type avoids
* a compiler bug in gcc that would cause it to use far more stack
* space than is needed. Without the NOINLINE we use the sum of the
* stack needed for each message type. Please be careful to follow the
* pattern below when adding any new messages
*/
static NOINLINE void send_heartbeat(mavlink_channel_t chan)
{
uint8_t base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
uint8_t system_status = MAV_STATE_ACTIVE;
uint32_t custom_mode = control_mode;
// work out the base_mode. This value is not very useful
// for APM, but we calculate it as best we can so a generic
// MAVLink enabled ground station can work out something about
// what the MAV is up to. The actual bit values are highly
// ambiguous for most of the APM flight modes. In practice, you
// only get useful information from the custom_mode, which maps to
// the APM flight mode and has a well defined meaning in the
// ArduPlane documentation
switch (control_mode) {
case MANUAL:
case TRAINING:
base_mode = MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
break;
case STABILIZE:
case FLY_BY_WIRE_A:
case FLY_BY_WIRE_B:
base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED;
break;
case AUTO:
case RTL:
case LOITER:
case GUIDED:
case CIRCLE:
base_mode = MAV_MODE_FLAG_GUIDED_ENABLED |
MAV_MODE_FLAG_STABILIZE_ENABLED;
// note that MAV_MODE_FLAG_AUTO_ENABLED does not match what
// APM does in any mode, as that is defined as "system finds its own goal
// positions", which APM does not currently do
break;
case INITIALISING:
system_status = MAV_STATE_CALIBRATING;
break;
}
if (!training_manual_pitch || !training_manual_roll) {
base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED;
}
if (control_mode != MANUAL && control_mode != INITIALISING) {
// stabiliser of some form is enabled
base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED;
}
if (g.stick_mixing && control_mode != INITIALISING) {
// all modes except INITIALISING have some form of manual
// override if stick mixing is enabled
base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
}
#if HIL_MODE != HIL_MODE_DISABLED
base_mode |= MAV_MODE_FLAG_HIL_ENABLED;
#endif
// we are armed if we are not initialising
if (control_mode != INITIALISING) {
base_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
}
// indicate we have set a custom mode
base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
mavlink_msg_heartbeat_send(
chan,
MAV_TYPE_FIXED_WING,
MAV_AUTOPILOT_ARDUPILOTMEGA,
base_mode,
custom_mode,
system_status);
}
static NOINLINE void send_attitude(mavlink_channel_t chan)
{
Vector3f omega = ahrs.get_gyro();
mavlink_msg_attitude_send(
chan,
millis(),
ahrs.roll,
ahrs.pitch - radians(g.pitch_trim_cd*0.01),
ahrs.yaw,
omega.x,
omega.y,
omega.z);
}
#if GEOFENCE_ENABLED == ENABLED
static NOINLINE void send_fence_status(mavlink_channel_t chan)
{
geofence_send_status(chan);
}
#endif
static NOINLINE void send_extended_status1(mavlink_channel_t chan, uint16_t packet_drops)
{
uint32_t control_sensors_present = 0;
uint32_t control_sensors_enabled;
uint32_t control_sensors_health;
// first what sensors/controllers we have
control_sensors_present |= (1<<0); // 3D gyro present
control_sensors_present |= (1<<1); // 3D accelerometer present
if (g.compass_enabled) {
control_sensors_present |= (1<<2); // compass present
}
control_sensors_present |= (1<<3); // absolute pressure sensor present
if (g_gps != NULL && g_gps->status() == GPS::GPS_OK) {
control_sensors_present |= (1<<5); // GPS present
}
control_sensors_present |= (1<<10); // 3D angular rate control
control_sensors_present |= (1<<11); // attitude stabilisation
control_sensors_present |= (1<<12); // yaw position
control_sensors_present |= (1<<13); // altitude control
control_sensors_present |= (1<<14); // X/Y position control
control_sensors_present |= (1<<15); // motor control
// now what sensors/controllers are enabled
// first the sensors
control_sensors_enabled = control_sensors_present & 0x1FF;
// now the controllers
control_sensors_enabled = control_sensors_present & 0x1FF;
switch (control_mode) {
case MANUAL:
break;
case STABILIZE:
case FLY_BY_WIRE_A:
control_sensors_enabled |= (1<<10); // 3D angular rate control
control_sensors_enabled |= (1<<11); // attitude stabilisation
break;
case FLY_BY_WIRE_B:
control_sensors_enabled |= (1<<10); // 3D angular rate control
control_sensors_enabled |= (1<<11); // attitude stabilisation
control_sensors_enabled |= (1<<15); // motor control
break;
case TRAINING:
if (!training_manual_roll || !training_manual_pitch) {
control_sensors_enabled |= (1<<10); // 3D angular rate control
control_sensors_enabled |= (1<<11); // attitude stabilisation
}
break;
case AUTO:
case RTL:
case LOITER:
case GUIDED:
case CIRCLE:
control_sensors_enabled |= (1<<10); // 3D angular rate control
control_sensors_enabled |= (1<<11); // attitude stabilisation
control_sensors_enabled |= (1<<12); // yaw position
control_sensors_enabled |= (1<<13); // altitude control
control_sensors_enabled |= (1<<14); // X/Y position control
control_sensors_enabled |= (1<<15); // motor control
break;
case INITIALISING:
break;
}
// at the moment all sensors/controllers are assumed healthy
control_sensors_health = control_sensors_present;
if (!compass.healthy) {
control_sensors_health &= ~(1<<2); // compass
}
if (!compass.use_for_yaw()) {
control_sensors_enabled &= ~(1<<2); // compass
}
uint16_t battery_current = -1;
uint8_t battery_remaining = -1;
if (current_total1 != 0 && g.pack_capacity != 0) {
battery_remaining = (100.0 * (g.pack_capacity - current_total1) / g.pack_capacity);
}
if (current_total1 != 0) {
battery_current = current_amps1 * 100;
}
if (g.battery_monitoring == 3) {
/*setting a out-of-range value.
* It informs to external devices that
* it cannot be calculated properly just by voltage*/
battery_remaining = 150;
}
mavlink_msg_sys_status_send(
chan,
control_sensors_present,
control_sensors_enabled,
control_sensors_health,
(uint16_t)(load * 1000),
battery_voltage1 * 1000, // mV
battery_current, // in 10mA units
battery_remaining, // in %
0, // comm drops %,
0, // comm drops in pkts,
0, 0, 0, 0);
}
static void NOINLINE send_meminfo(mavlink_channel_t chan)
{
#if CONFIG_HAL_BOARD != HAL_BOARD_AVR_SITL
extern unsigned __brkval;
mavlink_msg_meminfo_send(chan, __brkval, memcheck_available_memory());
#endif
}
static void NOINLINE send_location(mavlink_channel_t chan)
{
uint32_t fix_time;
// if we have a GPS fix, take the time as the last fix time. That
// allows us to correctly calculate velocities and extrapolate
// positions.
// If we don't have a GPS fix then we are dead reckoning, and will
// use the current boot time as the fix time.
if (g_gps->status() == GPS::GPS_OK) {
fix_time = g_gps->last_fix_time;
} else {
fix_time = millis();
}
mavlink_msg_global_position_int_send(
chan,
fix_time,
current_loc.lat, // in 1E7 degrees
current_loc.lng, // in 1E7 degrees
g_gps->altitude * 10, // millimeters above sea level
(current_loc.alt-home.alt) * 10, // millimeters above ground
g_gps->velocity_north() * 100, // X speed cm/s (+ve North)
g_gps->velocity_east() * 100, // Y speed cm/s (+ve East)
g_gps->velocity_down() * -100, // Z speed cm/s (+ve up)
ahrs.yaw_sensor);
}
static void NOINLINE send_nav_controller_output(mavlink_channel_t chan)
{
int16_t bearing = (hold_course==-1 ? nav_bearing_cd : hold_course) / 100;
mavlink_msg_nav_controller_output_send(
chan,
nav_roll_cd * 0.01,
nav_pitch_cd * 0.01,
bearing,
target_bearing_cd * 0.01,
wp_distance,
altitude_error_cm * 0.01,
airspeed_error_cm,
crosstrack_error);
}
static void NOINLINE send_gps_raw(mavlink_channel_t chan)
{
uint8_t fix = g_gps->status();
if (fix == GPS::GPS_OK) {
fix = 3;
}
mavlink_msg_gps_raw_int_send(
chan,
g_gps->last_fix_time*(uint64_t)1000,
fix,
g_gps->latitude, // in 1E7 degrees
g_gps->longitude, // in 1E7 degrees
g_gps->altitude * 10, // in mm
g_gps->hdop,
65535,
g_gps->ground_speed, // cm/s
g_gps->ground_course, // 1/100 degrees,
g_gps->num_sats);
}
static void NOINLINE send_servo_out(mavlink_channel_t chan)
{
// normalized values scaled to -10000 to 10000
// This is used for HIL. Do not change without discussing with
// HIL maintainers
mavlink_msg_rc_channels_scaled_send(
chan,
millis(),
0, // port 0
10000 * g.channel_roll.norm_output(),
10000 * g.channel_pitch.norm_output(),
10000 * g.channel_throttle.norm_output(),
10000 * g.channel_rudder.norm_output(),
0,
0,
0,
0,
receiver_rssi);
}
static void NOINLINE send_radio_in(mavlink_channel_t chan)
{
mavlink_msg_rc_channels_raw_send(
chan,
millis(),
0, // port
hal.rcin->read(CH_1),
hal.rcin->read(CH_2),
hal.rcin->read(CH_3),
hal.rcin->read(CH_4),
hal.rcin->read(CH_5),
hal.rcin->read(CH_6),
hal.rcin->read(CH_7),
hal.rcin->read(CH_8),
receiver_rssi);
}
static void NOINLINE send_radio_out(mavlink_channel_t chan)
{
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS
mavlink_msg_servo_output_raw_send(
chan,
micros(),
0, // port
hal.rcout->read(0),
hal.rcout->read(1),
hal.rcout->read(2),
hal.rcout->read(3),
hal.rcout->read(4),
hal.rcout->read(5),
hal.rcout->read(6),
hal.rcout->read(7));
#else
extern RC_Channel* rc_ch[8];
mavlink_msg_servo_output_raw_send(
chan,
micros(),
0, // port
rc_ch[0]->radio_out,
rc_ch[1]->radio_out,
rc_ch[2]->radio_out,
rc_ch[3]->radio_out,
rc_ch[4]->radio_out,
rc_ch[5]->radio_out,
rc_ch[6]->radio_out,
rc_ch[7]->radio_out);
#endif
}
static void NOINLINE send_vfr_hud(mavlink_channel_t chan)
{
float aspeed;
if (airspeed.enabled()) {
aspeed = airspeed.get_airspeed();
} else if (!ahrs.airspeed_estimate(&aspeed)) {
aspeed = 0;
}
float throttle_norm = g.channel_throttle.norm_output() * 100;
throttle_norm = constrain_int16(throttle_norm, -100, 100);
uint16_t throttle = ((uint16_t)(throttle_norm + 100)) / 2;
mavlink_msg_vfr_hud_send(
chan,
aspeed,
(float)g_gps->ground_speed * 0.01,
(ahrs.yaw_sensor / 100) % 360,
throttle,
current_loc.alt / 100.0,
barometer.get_climb_rate());
}
static void NOINLINE send_raw_imu1(mavlink_channel_t chan)
{
Vector3f accel = ins.get_accel();
Vector3f gyro = ins.get_gyro();
mavlink_msg_raw_imu_send(
chan,
micros(),
accel.x * 1000.0 / gravity,
accel.y * 1000.0 / gravity,
accel.z * 1000.0 / gravity,
gyro.x * 1000.0,
gyro.y * 1000.0,
gyro.z * 1000.0,
compass.mag_x,
compass.mag_y,
compass.mag_z);
}
static void NOINLINE send_raw_imu2(mavlink_channel_t chan)
{
int32_t pressure = barometer.get_pressure();
mavlink_msg_scaled_pressure_send(
chan,
millis(),
pressure/100.0,
(pressure - barometer.get_ground_pressure())/100.0,
barometer.get_temperature());
}
static void NOINLINE send_raw_imu3(mavlink_channel_t chan)
{
Vector3f mag_offsets = compass.get_offsets();
Vector3f accel_offsets = ins.get_accel_offsets();
Vector3f gyro_offsets = ins.get_gyro_offsets();
mavlink_msg_sensor_offsets_send(chan,
mag_offsets.x,
mag_offsets.y,
mag_offsets.z,
compass.get_declination(),
barometer.get_raw_pressure(),
barometer.get_raw_temp(),
gyro_offsets.x,
gyro_offsets.y,
gyro_offsets.z,
accel_offsets.x,
accel_offsets.y,
accel_offsets.z);
}
static void NOINLINE send_ahrs(mavlink_channel_t chan)
{
Vector3f omega_I = ahrs.get_gyro_drift();
mavlink_msg_ahrs_send(
chan,
omega_I.x,
omega_I.y,
omega_I.z,
0,
0,
ahrs.get_error_rp(),
ahrs.get_error_yaw());
}
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
// report simulator state
static void NOINLINE send_simstate(mavlink_channel_t chan)
{
sitl.simstate_send(chan);
}
#endif
static void NOINLINE send_hwstatus(mavlink_channel_t chan)
{
mavlink_msg_hwstatus_send(
chan,
board_voltage(),
hal.i2c->lockup_count());
}
static void NOINLINE send_wind(mavlink_channel_t chan)
{
Vector3f wind = ahrs.wind_estimate();
mavlink_msg_wind_send(
chan,
degrees(atan2(-wind.y, -wind.x)), // use negative, to give
// direction wind is coming from
wind.length(),
wind.z);
}
static void NOINLINE send_current_waypoint(mavlink_channel_t chan)
{
mavlink_msg_mission_current_send(
chan,
g.command_index);
}
static void NOINLINE send_statustext(mavlink_channel_t chan)
{
mavlink_statustext_t *s = (chan == MAVLINK_COMM_0?&gcs0.pending_status:&gcs3.pending_status);
mavlink_msg_statustext_send(
chan,
s->severity,
s->text);
}
// are we still delaying telemetry to try to avoid Xbee bricking?
static bool telemetry_delayed(mavlink_channel_t chan)
{
uint32_t tnow = millis() >> 10;
if (tnow > g.telem_delay) {
return false;
}
#if USB_MUX_PIN > 0
if (chan == MAVLINK_COMM_0 && usb_connected) {
// this is an APM2 with USB telemetry
return false;
}
// we're either on the 2nd UART, or no USB cable is connected
// we need to delay telemetry
return true;
#else
if (chan == MAVLINK_COMM_0) {
// we're on the USB port
return false;
}
// don't send telemetry yet
return true;
#endif
}
// try to send a message, return false if it won't fit in the serial tx buffer
static bool mavlink_try_send_message(mavlink_channel_t chan, enum ap_message id, uint16_t packet_drops)
{
int16_t payload_space = comm_get_txspace(chan) - MAVLINK_NUM_NON_PAYLOAD_BYTES;
if (telemetry_delayed(chan)) {
return false;
}
switch (id) {
case MSG_HEARTBEAT:
CHECK_PAYLOAD_SIZE(HEARTBEAT);
send_heartbeat(chan);
return true;
case MSG_EXTENDED_STATUS1:
CHECK_PAYLOAD_SIZE(SYS_STATUS);
send_extended_status1(chan, packet_drops);
break;
case MSG_EXTENDED_STATUS2:
CHECK_PAYLOAD_SIZE(MEMINFO);
send_meminfo(chan);
break;
case MSG_ATTITUDE:
CHECK_PAYLOAD_SIZE(ATTITUDE);
send_attitude(chan);
break;
case MSG_LOCATION:
CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT);
send_location(chan);
break;
case MSG_NAV_CONTROLLER_OUTPUT:
if (control_mode != MANUAL) {
CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT);
send_nav_controller_output(chan);
}
break;
case MSG_GPS_RAW:
CHECK_PAYLOAD_SIZE(GPS_RAW_INT);
send_gps_raw(chan);
break;
case MSG_SERVO_OUT:
CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED);
send_servo_out(chan);
break;
case MSG_RADIO_IN:
CHECK_PAYLOAD_SIZE(RC_CHANNELS_RAW);
send_radio_in(chan);
break;
case MSG_RADIO_OUT:
CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW);
send_radio_out(chan);
break;
case MSG_VFR_HUD:
CHECK_PAYLOAD_SIZE(VFR_HUD);
send_vfr_hud(chan);
break;
case MSG_RAW_IMU1:
CHECK_PAYLOAD_SIZE(RAW_IMU);
send_raw_imu1(chan);
break;
case MSG_RAW_IMU2:
CHECK_PAYLOAD_SIZE(SCALED_PRESSURE);
send_raw_imu2(chan);
break;
case MSG_RAW_IMU3:
CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS);
send_raw_imu3(chan);
break;
case MSG_CURRENT_WAYPOINT:
CHECK_PAYLOAD_SIZE(MISSION_CURRENT);
send_current_waypoint(chan);
break;
case MSG_NEXT_PARAM:
CHECK_PAYLOAD_SIZE(PARAM_VALUE);
if (chan == MAVLINK_COMM_0) {
gcs0.queued_param_send();
} else if (gcs3.initialised) {
gcs3.queued_param_send();
}
break;
case MSG_NEXT_WAYPOINT:
CHECK_PAYLOAD_SIZE(MISSION_REQUEST);
if (chan == MAVLINK_COMM_0) {
gcs0.queued_waypoint_send();
} else if (gcs3.initialised) {
gcs3.queued_waypoint_send();
}
break;
case MSG_STATUSTEXT:
CHECK_PAYLOAD_SIZE(STATUSTEXT);
send_statustext(chan);
break;
#if GEOFENCE_ENABLED == ENABLED
case MSG_FENCE_STATUS:
CHECK_PAYLOAD_SIZE(FENCE_STATUS);
send_fence_status(chan);
break;
#endif
case MSG_AHRS:
CHECK_PAYLOAD_SIZE(AHRS);
send_ahrs(chan);
break;
case MSG_SIMSTATE:
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
CHECK_PAYLOAD_SIZE(SIMSTATE);
send_simstate(chan);
#endif
break;
case MSG_HWSTATUS:
CHECK_PAYLOAD_SIZE(HWSTATUS);
send_hwstatus(chan);
break;
case MSG_WIND:
CHECK_PAYLOAD_SIZE(WIND);
send_wind(chan);
break;
case MSG_RETRY_DEFERRED:
break; // just here to prevent a warning
}
return true;
}
#define MAX_DEFERRED_MESSAGES MSG_RETRY_DEFERRED
static struct mavlink_queue {
enum ap_message deferred_messages[MAX_DEFERRED_MESSAGES];
uint8_t next_deferred_message;
uint8_t num_deferred_messages;
} mavlink_queue[2];
// send a message using mavlink
static void mavlink_send_message(mavlink_channel_t chan, enum ap_message id, uint16_t packet_drops)
{
uint8_t i, nextid;
struct mavlink_queue *q = &mavlink_queue[(uint8_t)chan];
// see if we can send the deferred messages, if any
while (q->num_deferred_messages != 0) {
if (!mavlink_try_send_message(chan,
q->deferred_messages[q->next_deferred_message],
packet_drops)) {
break;
}
q->next_deferred_message++;
if (q->next_deferred_message == MAX_DEFERRED_MESSAGES) {
q->next_deferred_message = 0;
}
q->num_deferred_messages--;
}
if (id == MSG_RETRY_DEFERRED) {
return;
}
// this message id might already be deferred
for (i=0, nextid = q->next_deferred_message; i < q->num_deferred_messages; i++) {
if (q->deferred_messages[nextid] == id) {
// its already deferred, discard
return;
}
nextid++;
if (nextid == MAX_DEFERRED_MESSAGES) {
nextid = 0;
}
}
if (q->num_deferred_messages != 0 ||
!mavlink_try_send_message(chan, id, packet_drops)) {
// can't send it now, so defer it
if (q->num_deferred_messages == MAX_DEFERRED_MESSAGES) {
// the defer buffer is full, discard
return;
}
nextid = q->next_deferred_message + q->num_deferred_messages;
if (nextid >= MAX_DEFERRED_MESSAGES) {
nextid -= MAX_DEFERRED_MESSAGES;
}
q->deferred_messages[nextid] = id;
q->num_deferred_messages++;
}
}
void mavlink_send_text(mavlink_channel_t chan, gcs_severity severity, const char *str)
{
if (telemetry_delayed(chan)) {
return;
}
if (severity == SEVERITY_LOW) {
// send via the deferred queuing system
mavlink_statustext_t *s = (chan == MAVLINK_COMM_0?&gcs0.pending_status:&gcs3.pending_status);
s->severity = (uint8_t)severity;
strncpy((char *)s->text, str, sizeof(s->text));
mavlink_send_message(chan, MSG_STATUSTEXT, 0);
} else {
// send immediately
mavlink_msg_statustext_send(chan, severity, str);
}
}
const AP_Param::GroupInfo GCS_MAVLINK::var_info[] PROGMEM = {
AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRateRawSensors, 0),
AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRateExtendedStatus, 0),
AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRateRCChannels, 0),
AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRateRawController, 0),
AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRatePosition, 0),
AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRateExtra1, 0),
AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRateExtra2, 0),
AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRateExtra3, 0),
AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRateParams, 0),
AP_GROUPEND
};
GCS_MAVLINK::GCS_MAVLINK() :
packet_drops(0),
waypoint_send_timeout(1000), // 1 second
waypoint_receive_timeout(1000) // 1 second
{
}
void
GCS_MAVLINK::init(AP_HAL::UARTDriver *port)
{
GCS_Class::init(port);
if (port == (AP_HAL::BetterStream*)hal.uartA) {
mavlink_comm_0_port = port;
chan = MAVLINK_COMM_0;
}else{
mavlink_comm_1_port = port;
chan = MAVLINK_COMM_1;
}
_queued_parameter = NULL;
reset_cli_timeout();
}
void
GCS_MAVLINK::update(void)
{
// receive new packets
mavlink_message_t msg;
mavlink_status_t status;
status.packet_rx_drop_count = 0;
// process received bytes
while (comm_get_available(chan))
{
uint8_t c = comm_receive_ch(chan);
#if CLI_ENABLED == ENABLED
/* allow CLI to be started by hitting enter 3 times, if no
* heartbeat packets have been received */
if (mavlink_active == 0 && (millis() - _cli_timeout) < 30000) {
if (c == '\n' || c == '\r') {
crlf_count++;
} else {
crlf_count = 0;
}
if (crlf_count == 3) {
run_cli(_port);
}
}
#endif
// Try to get a new message
if (mavlink_parse_char(chan, c, &msg, &status)) {
// we exclude radio packets to make it possible to use the
// CLI over the radio
if (msg.msgid != MAVLINK_MSG_ID_RADIO) {
mavlink_active = true;
}
handleMessage(&msg);
}
}
// Update packet drops counter
packet_drops += status.packet_rx_drop_count;
if (!waypoint_receiving) {
return;
}
uint32_t tnow = millis();
if (waypoint_receiving &&
waypoint_request_i <= waypoint_request_last &&
tnow > waypoint_timelast_request + 500 + (stream_slowdown*20)) {
waypoint_timelast_request = tnow;
send_message(MSG_NEXT_WAYPOINT);
}
// stop waypoint receiving if timeout
if (waypoint_receiving && (millis() - waypoint_timelast_receive) > waypoint_receive_timeout) {
waypoint_receiving = false;
}
}
// see if we should send a stream now. Called at 50Hz
bool GCS_MAVLINK::stream_trigger(enum streams stream_num)
{
AP_Int16 *stream_rates = &streamRateRawSensors;
float rate = (uint8_t)stream_rates[stream_num].get();
// send at a much lower rate while handling waypoints and
// parameter sends
if (waypoint_receiving || _queued_parameter != NULL) {
rate *= 0.25;
}
if (rate <= 0) {
return false;
}
if (stream_ticks[stream_num] == 0) {
// we're triggering now, setup the next trigger point
if (rate > 50) {
rate = 50;
}
stream_ticks[stream_num] = (50 / rate) + stream_slowdown;
return true;
}
// count down at 50Hz
stream_ticks[stream_num]--;
return false;
}
void
GCS_MAVLINK::data_stream_send(void)
{
if (_queued_parameter != NULL) {
if (streamRateParams.get() <= 0) {
streamRateParams.set(50);
}
if (stream_trigger(STREAM_PARAMS)) {
send_message(MSG_NEXT_PARAM);
}
}
if (in_mavlink_delay) {
#if HIL_MODE != HIL_MODE_DISABLED
// in HIL we need to keep sending servo values to ensure
// the simulator doesn't pause, otherwise our sensor
// calibration could stall
if (stream_trigger(STREAM_RAW_CONTROLLER)) {
send_message(MSG_SERVO_OUT);
}
if (stream_trigger(STREAM_RC_CHANNELS)) {
send_message(MSG_RADIO_OUT);
}
#endif
// don't send any other stream types while in the delay callback
return;
}
if (stream_trigger(STREAM_RAW_SENSORS)) {
send_message(MSG_RAW_IMU1);
send_message(MSG_RAW_IMU2);
send_message(MSG_RAW_IMU3);
}
if (stream_trigger(STREAM_EXTENDED_STATUS)) {
send_message(MSG_EXTENDED_STATUS1);
send_message(MSG_EXTENDED_STATUS2);
send_message(MSG_CURRENT_WAYPOINT);
send_message(MSG_GPS_RAW); // TODO - remove this message after location message is working
send_message(MSG_NAV_CONTROLLER_OUTPUT);
send_message(MSG_FENCE_STATUS);
}
if (stream_trigger(STREAM_POSITION)) {
// sent with GPS read
send_message(MSG_LOCATION);
}
if (stream_trigger(STREAM_RAW_CONTROLLER)) {
send_message(MSG_SERVO_OUT);
}
if (stream_trigger(STREAM_RC_CHANNELS)) {
send_message(MSG_RADIO_OUT);
send_message(MSG_RADIO_IN);
}
if (stream_trigger(STREAM_EXTRA1)) {
send_message(MSG_ATTITUDE);
send_message(MSG_SIMSTATE);
}
if (stream_trigger(STREAM_EXTRA2)) {
send_message(MSG_VFR_HUD);
}
if (stream_trigger(STREAM_EXTRA3)) {
send_message(MSG_AHRS);
send_message(MSG_HWSTATUS);
send_message(MSG_WIND);
}
}
void
GCS_MAVLINK::send_message(enum ap_message id)
{
mavlink_send_message(chan,id, packet_drops);
}
void
GCS_MAVLINK::send_text_P(gcs_severity severity, const prog_char_t *str)
{
mavlink_statustext_t m;
uint8_t i;
for (i=0; i<sizeof(m.text); i++) {
m.text[i] = pgm_read_byte((const prog_char *)(str++));
}
if (i < sizeof(m.text)) m.text[i] = 0;
mavlink_send_text(chan, severity, (const char *)m.text);
}
void GCS_MAVLINK::handleMessage(mavlink_message_t* msg)
{
struct Location tell_command = {}; // command for telemetry
switch (msg->msgid) {
case MAVLINK_MSG_ID_REQUEST_DATA_STREAM:
{
// decode
mavlink_request_data_stream_t packet;
mavlink_msg_request_data_stream_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
break;
int16_t freq = 0; // packet frequency
if (packet.start_stop == 0)
freq = 0; // stop sending
else if (packet.start_stop == 1)
freq = packet.req_message_rate; // start sending
else
break;
switch(packet.req_stream_id) {
case MAV_DATA_STREAM_ALL:
streamRateRawSensors.set_and_save_ifchanged(freq);
streamRateExtendedStatus.set_and_save_ifchanged(freq);
streamRateRCChannels.set_and_save_ifchanged(freq);
streamRateRawController.set_and_save_ifchanged(freq);
streamRatePosition.set_and_save_ifchanged(freq);
streamRateExtra1.set_and_save_ifchanged(freq);
streamRateExtra2.set_and_save_ifchanged(freq);
streamRateExtra3.set_and_save_ifchanged(freq);
break;
case MAV_DATA_STREAM_RAW_SENSORS:
if (freq <= 5) {
streamRateRawSensors.set_and_save_ifchanged(freq);
} else {
// We do not set and save this one so that if HIL is shut down incorrectly
// we will not continue to broadcast raw sensor data at 50Hz.
streamRateRawSensors = freq;
}
break;
case MAV_DATA_STREAM_EXTENDED_STATUS:
streamRateExtendedStatus.set_and_save_ifchanged(freq);
break;
case MAV_DATA_STREAM_RC_CHANNELS:
streamRateRCChannels.set_and_save_ifchanged(freq);
break;
case MAV_DATA_STREAM_RAW_CONTROLLER:
streamRateRawController.set_and_save_ifchanged(freq);
break;
case MAV_DATA_STREAM_POSITION:
streamRatePosition.set_and_save_ifchanged(freq);
break;
case MAV_DATA_STREAM_EXTRA1:
streamRateExtra1.set_and_save_ifchanged(freq);
break;
case MAV_DATA_STREAM_EXTRA2:
streamRateExtra2.set_and_save_ifchanged(freq);
break;
case MAV_DATA_STREAM_EXTRA3:
streamRateExtra3.set_and_save_ifchanged(freq);
break;
default:
break;
}
break;
}
case MAVLINK_MSG_ID_COMMAND_LONG:
{
// decode
mavlink_command_long_t packet;
mavlink_msg_command_long_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component)) break;
uint8_t result = MAV_RESULT_UNSUPPORTED;
// do command
send_text_P(SEVERITY_LOW,PSTR("command received: "));
switch(packet.command) {
case MAV_CMD_NAV_LOITER_UNLIM:
set_mode(LOITER);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
set_mode(RTL);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_MISSION_START:
set_mode(AUTO);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_PREFLIGHT_CALIBRATION:
if (packet.param1 == 1 ||
packet.param2 == 1) {
startup_INS_ground(true);
} else if (packet.param3 == 1) {
init_barometer();
if (airspeed.enabled()) {
zero_airspeed();
}
}
if (packet.param4 == 1) {
trim_radio();
}
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_DO_SET_MODE:
switch ((uint16_t)packet.param1) {
case MAV_MODE_MANUAL_ARMED:
case MAV_MODE_MANUAL_DISARMED:
set_mode(MANUAL);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_MODE_AUTO_ARMED:
case MAV_MODE_AUTO_DISARMED:
set_mode(AUTO);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_MODE_STABILIZE_DISARMED:
case MAV_MODE_STABILIZE_ARMED:
set_mode(FLY_BY_WIRE_A);
result = MAV_RESULT_ACCEPTED;
break;
default:
result = MAV_RESULT_UNSUPPORTED;
}
break;
case MAV_CMD_DO_SET_SERVO:
hal.rcout->enable_ch(packet.param1 - 1);
hal.rcout->write(packet.param1 - 1, packet.param2);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_DO_REPEAT_SERVO:
do_repeat_servo(packet.param1, packet.param2, packet.param3, packet.param4);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN:
if (packet.param1 == 1) {
reboot_apm();
result = MAV_RESULT_ACCEPTED;
}
break;
default:
break;
}
mavlink_msg_command_ack_send(
chan,
packet.command,
result);
break;
}
case MAVLINK_MSG_ID_SET_MODE:
{
// decode
mavlink_set_mode_t packet;
mavlink_msg_set_mode_decode(msg, &packet);
if (!(packet.base_mode & MAV_MODE_FLAG_CUSTOM_MODE_ENABLED)) {
// we ignore base_mode as there is no sane way to map
// from that bitmap to a APM flight mode. We rely on
// custom_mode instead.
break;
}
switch (packet.custom_mode) {
case MANUAL:
case CIRCLE:
case STABILIZE:
case TRAINING:
case FLY_BY_WIRE_A:
case FLY_BY_WIRE_B:
case AUTO:
case RTL:
case LOITER:
set_mode((enum FlightMode)packet.custom_mode);
break;
}
break;
}
case MAVLINK_MSG_ID_MISSION_REQUEST_LIST:
{
// decode
mavlink_mission_request_list_t packet;
mavlink_msg_mission_request_list_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
break;
// Start sending waypoints
mavlink_msg_mission_count_send(
chan,msg->sysid,
msg->compid,
g.command_total + 1); // + home
waypoint_timelast_send = millis();
waypoint_receiving = false;
waypoint_dest_sysid = msg->sysid;
waypoint_dest_compid = msg->compid;
break;
}
// XXX read a WP from EEPROM and send it to the GCS
case MAVLINK_MSG_ID_MISSION_REQUEST:
{
// decode
mavlink_mission_request_t packet;
mavlink_msg_mission_request_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
break;
// send waypoint
tell_command = get_cmd_with_index_raw(packet.seq);
// set frame of waypoint
uint8_t frame;
if (tell_command.options & MASK_OPTIONS_RELATIVE_ALT) {
frame = MAV_FRAME_GLOBAL_RELATIVE_ALT; // reference frame
} else {
frame = MAV_FRAME_GLOBAL; // reference frame
}
float param1 = 0, param2 = 0, param3 = 0, param4 = 0;
// time that the mav should loiter in milliseconds
uint8_t current = 0; // 1 (true), 0 (false)
if (packet.seq == (uint16_t)g.command_index)
current = 1;
uint8_t autocontinue = 1; // 1 (true), 0 (false)
float x = 0, y = 0, z = 0;
if (tell_command.id < MAV_CMD_NAV_LAST || tell_command.id == MAV_CMD_CONDITION_CHANGE_ALT) {
// command needs scaling
x = tell_command.lat/1.0e7; // local (x), global (latitude)
y = tell_command.lng/1.0e7; // local (y), global (longitude)
z = tell_command.alt/1.0e2;
}
switch (tell_command.id) { // Switch to map APM command fields inot MAVLink command fields
case MAV_CMD_NAV_LOITER_TURNS:
case MAV_CMD_NAV_TAKEOFF:
case MAV_CMD_DO_SET_HOME:
case MAV_CMD_NAV_LOITER_TIME:
param1 = tell_command.p1;
break;
case MAV_CMD_CONDITION_CHANGE_ALT:
x=0; // Clear fields loaded above that we don't want sent for this command
y=0;
case MAV_CMD_CONDITION_DELAY:
case MAV_CMD_CONDITION_DISTANCE:
param1 = tell_command.lat;
break;
case MAV_CMD_DO_JUMP:
param2 = tell_command.lat;
param1 = tell_command.p1;
break;
case MAV_CMD_DO_REPEAT_SERVO:
param4 = tell_command.lng;
case MAV_CMD_DO_REPEAT_RELAY:
case MAV_CMD_DO_CHANGE_SPEED:
param3 = tell_command.lat;
param2 = tell_command.alt;
param1 = tell_command.p1;
break;
case MAV_CMD_DO_SET_PARAMETER:
case MAV_CMD_DO_SET_RELAY:
case MAV_CMD_DO_SET_SERVO:
param2 = tell_command.alt;
param1 = tell_command.p1;
break;
}
mavlink_msg_mission_item_send(chan,msg->sysid,
msg->compid,
packet.seq,
frame,
tell_command.id,
current,
autocontinue,
param1,
param2,
param3,
param4,
x,
y,
z);
// update last waypoint comm stamp
waypoint_timelast_send = millis();
break;
}
case MAVLINK_MSG_ID_MISSION_ACK:
{
// decode
mavlink_mission_ack_t packet;
mavlink_msg_mission_ack_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
break;
}
case MAVLINK_MSG_ID_PARAM_REQUEST_LIST:
{
// decode
mavlink_param_request_list_t packet;
mavlink_msg_param_request_list_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
// Start sending parameters - next call to ::update will kick the first one out
_queued_parameter = AP_Param::first(&_queued_parameter_token, &_queued_parameter_type);
_queued_parameter_index = 0;
_queued_parameter_count = _count_parameters();
break;
}
case MAVLINK_MSG_ID_PARAM_REQUEST_READ:
{
// decode
mavlink_param_request_read_t packet;
mavlink_msg_param_request_read_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
enum ap_var_type p_type;
AP_Param *vp;
if (packet.param_index != -1) {
vp = AP_Param::find_by_index(packet.param_index, &p_type);
if (vp == NULL) {
gcs_send_text_fmt(PSTR("Unknown parameter index %d"), packet.param_index);
break;
}
} else {
vp = AP_Param::find(packet.param_id, &p_type);
if (vp == NULL) {
gcs_send_text_fmt(PSTR("Unknown parameter %.16s"), packet.param_id);
break;
}
}
char param_name[AP_MAX_NAME_SIZE];
vp->copy_name(param_name, sizeof(param_name), true);
float value = vp->cast_to_float(p_type);
mavlink_msg_param_value_send(
chan,
param_name,
value,
mav_var_type(p_type),
_count_parameters(),
packet.param_index);
break;
}
case MAVLINK_MSG_ID_MISSION_CLEAR_ALL:
{
// decode
mavlink_mission_clear_all_t packet;
mavlink_msg_mission_clear_all_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component)) break;
// clear all commands
g.command_total.set_and_save(0);
// note that we don't send multiple acks, as otherwise a
// GCS that is doing a clear followed by a set may see
// the additional ACKs as ACKs of the set operations
mavlink_msg_mission_ack_send(chan, msg->sysid, msg->compid, MAV_MISSION_ACCEPTED);
break;
}
case MAVLINK_MSG_ID_MISSION_SET_CURRENT:
{
// decode
mavlink_mission_set_current_t packet;
mavlink_msg_mission_set_current_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
// set current command
change_command(packet.seq);
mavlink_msg_mission_current_send(chan, g.command_index);
break;
}
case MAVLINK_MSG_ID_MISSION_COUNT:
{
// decode
mavlink_mission_count_t packet;
mavlink_msg_mission_count_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
// start waypoint receiving
if (packet.count > MAX_WAYPOINTS) {
packet.count = MAX_WAYPOINTS;
}
g.command_total.set_and_save(packet.count - 1);
waypoint_timelast_receive = millis();
waypoint_timelast_request = 0;
waypoint_receiving = true;
waypoint_request_i = 0;
waypoint_request_last= g.command_total;
break;
}
case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST:
{
// decode
mavlink_mission_write_partial_list_t packet;
mavlink_msg_mission_write_partial_list_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
// start waypoint receiving
if (packet.start_index > g.command_total ||
packet.end_index > g.command_total ||
packet.end_index < packet.start_index) {
send_text_P(SEVERITY_LOW,PSTR("flight plan update rejected"));
break;
}
waypoint_timelast_receive = millis();
waypoint_timelast_request = 0;
waypoint_receiving = true;
waypoint_request_i = packet.start_index;
waypoint_request_last= packet.end_index;
break;
}
#ifdef MAVLINK_MSG_ID_SET_MAG_OFFSETS
case MAVLINK_MSG_ID_SET_MAG_OFFSETS:
{
mavlink_set_mag_offsets_t packet;
mavlink_msg_set_mag_offsets_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
compass.set_offsets(Vector3f(packet.mag_ofs_x, packet.mag_ofs_y, packet.mag_ofs_z));
break;
}
#endif
// XXX receive a WP from GCS and store in EEPROM
case MAVLINK_MSG_ID_MISSION_ITEM:
{
// decode
mavlink_mission_item_t packet;
uint8_t result = MAV_MISSION_ACCEPTED;
mavlink_msg_mission_item_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
// defaults
tell_command.id = packet.command;
switch (packet.frame)
{
case MAV_FRAME_MISSION:
case MAV_FRAME_GLOBAL:
{
tell_command.lat = 1.0e7*packet.x; // in as DD converted to * t7
tell_command.lng = 1.0e7*packet.y; // in as DD converted to * t7
tell_command.alt = packet.z*1.0e2; // in as m converted to cm
tell_command.options = 0; // absolute altitude
break;
}
#ifdef MAV_FRAME_LOCAL_NED
case MAV_FRAME_LOCAL_NED: // local (relative to home position)
{
tell_command.lat = 1.0e7*ToDeg(packet.x/
(radius_of_earth*cos(ToRad(home.lat/1.0e7)))) + home.lat;
tell_command.lng = 1.0e7*ToDeg(packet.y/radius_of_earth) + home.lng;
tell_command.alt = -packet.z*1.0e2;
tell_command.options = MASK_OPTIONS_RELATIVE_ALT;
break;
}
#endif
#ifdef MAV_FRAME_LOCAL
case MAV_FRAME_LOCAL: // local (relative to home position)
{
tell_command.lat = 1.0e7*ToDeg(packet.x/
(radius_of_earth*cos(ToRad(home.lat/1.0e7)))) + home.lat;
tell_command.lng = 1.0e7*ToDeg(packet.y/radius_of_earth) + home.lng;
tell_command.alt = packet.z*1.0e2;
tell_command.options = MASK_OPTIONS_RELATIVE_ALT;
break;
}
#endif
case MAV_FRAME_GLOBAL_RELATIVE_ALT: // absolute lat/lng, relative altitude
{
tell_command.lat = 1.0e7 * packet.x; // in as DD converted to * t7
tell_command.lng = 1.0e7 * packet.y; // in as DD converted to * t7
tell_command.alt = packet.z * 1.0e2;
tell_command.options = MASK_OPTIONS_RELATIVE_ALT; // store altitude relative!! Always!!
break;
}
default:
result = MAV_MISSION_UNSUPPORTED_FRAME;
break;
}
if (result != MAV_MISSION_ACCEPTED) goto mission_failed;
// Switch to map APM command fields into MAVLink command fields
switch (tell_command.id) {
case MAV_CMD_NAV_WAYPOINT:
case MAV_CMD_NAV_LOITER_UNLIM:
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
case MAV_CMD_NAV_LAND:
break;
case MAV_CMD_NAV_LOITER_TURNS:
case MAV_CMD_NAV_TAKEOFF:
case MAV_CMD_DO_SET_HOME:
case MAV_CMD_NAV_LOITER_TIME:
tell_command.p1 = packet.param1;
break;
case MAV_CMD_CONDITION_CHANGE_ALT:
tell_command.lat = packet.param1;
break;
case MAV_CMD_CONDITION_DELAY:
case MAV_CMD_CONDITION_DISTANCE:
tell_command.lat = packet.param1;
break;
case MAV_CMD_DO_JUMP:
tell_command.lat = packet.param2;
tell_command.p1 = packet.param1;
break;
case MAV_CMD_DO_REPEAT_SERVO:
tell_command.lng = packet.param4;
case MAV_CMD_DO_REPEAT_RELAY:
case MAV_CMD_DO_CHANGE_SPEED:
tell_command.lat = packet.param3;
tell_command.alt = packet.param2;
tell_command.p1 = packet.param1;
break;
case MAV_CMD_DO_SET_PARAMETER:
case MAV_CMD_DO_SET_RELAY:
case MAV_CMD_DO_SET_SERVO:
tell_command.alt = packet.param2;
tell_command.p1 = packet.param1;
break;
default:
result = MAV_MISSION_UNSUPPORTED;
break;
}
if (result != MAV_MISSION_ACCEPTED) goto mission_failed;
if(packet.current == 2) { //current = 2 is a flag to tell us this is a "guided mode" waypoint and not for the mission
guided_WP = tell_command;
// add home alt if needed
if (guided_WP.options & MASK_OPTIONS_RELATIVE_ALT) {
guided_WP.alt += home.alt;
}
set_mode(GUIDED);
// make any new wp uploaded instant (in case we are already in Guided mode)
set_guided_WP();
// verify we recevied the command
mavlink_msg_mission_ack_send(
chan,
msg->sysid,
msg->compid,
0);
} else if(packet.current == 3) { //current = 3 is a flag to tell us this is a alt change only
// add home alt if needed
if (tell_command.options & MASK_OPTIONS_RELATIVE_ALT) {
tell_command.alt += home.alt;
}
next_WP.alt = tell_command.alt;
// verify we recevied the command
mavlink_msg_mission_ack_send(
chan,
msg->sysid,
msg->compid,
0);
} else {
// Check if receiving waypoints (mission upload expected)
if (!waypoint_receiving) {
result = MAV_MISSION_ERROR;
goto mission_failed;
}
// check if this is the requested waypoint
if (packet.seq != waypoint_request_i) {
result = MAV_MISSION_INVALID_SEQUENCE;
goto mission_failed;
}
set_cmd_with_index(tell_command, packet.seq);
// update waypoint receiving state machine
waypoint_timelast_receive = millis();
waypoint_timelast_request = 0;
waypoint_request_i++;
if (waypoint_request_i > waypoint_request_last) {
mavlink_msg_mission_ack_send(
chan,
msg->sysid,
msg->compid,
result);
send_text_P(SEVERITY_LOW,PSTR("flight plan received"));
waypoint_receiving = false;
// XXX ignores waypoint radius for individual waypoints, can
// only set WP_RADIUS parameter
}
}
break;
mission_failed:
// we are rejecting the mission/waypoint
mavlink_msg_mission_ack_send(
chan,
msg->sysid,
msg->compid,
result);
break;
}
#if GEOFENCE_ENABLED == ENABLED
// receive a fence point from GCS and store in EEPROM
case MAVLINK_MSG_ID_FENCE_POINT: {
mavlink_fence_point_t packet;
mavlink_msg_fence_point_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
break;
if (g.fence_action != FENCE_ACTION_NONE) {
send_text_P(SEVERITY_LOW,PSTR("fencing must be disabled"));
} else if (packet.count != g.fence_total) {
send_text_P(SEVERITY_LOW,PSTR("bad fence point"));
} else {
Vector2l point;
point.x = packet.lat*1.0e7;
point.y = packet.lng*1.0e7;
set_fence_point_with_index(point, packet.idx);
}
break;
}
// send a fence point to GCS
case MAVLINK_MSG_ID_FENCE_FETCH_POINT: {
mavlink_fence_fetch_point_t packet;
mavlink_msg_fence_fetch_point_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
break;
if (packet.idx >= g.fence_total) {
send_text_P(SEVERITY_LOW,PSTR("bad fence point"));
} else {
Vector2l point = get_fence_point_with_index(packet.idx);
mavlink_msg_fence_point_send(chan, 0, 0, packet.idx, g.fence_total,
point.x*1.0e-7, point.y*1.0e-7);
}
break;
}
#endif // GEOFENCE_ENABLED
case MAVLINK_MSG_ID_PARAM_SET:
{
AP_Param *vp;
enum ap_var_type var_type;
// decode
mavlink_param_set_t packet;
mavlink_msg_param_set_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
break;
// set parameter
char key[AP_MAX_NAME_SIZE+1];
strncpy(key, (char *)packet.param_id, AP_MAX_NAME_SIZE);
key[AP_MAX_NAME_SIZE] = 0;
// find the requested parameter
vp = AP_Param::find(key, &var_type);
if ((NULL != vp) && // exists
!isnan(packet.param_value) && // not nan
!isinf(packet.param_value)) { // not inf
// add a small amount before casting parameter values
// from float to integer to avoid truncating to the
// next lower integer value.
float rounding_addition = 0.01;
// handle variables with standard type IDs
if (var_type == AP_PARAM_FLOAT) {
((AP_Float *)vp)->set_and_save(packet.param_value);
} else if (var_type == AP_PARAM_INT32) {
if (packet.param_value < 0) rounding_addition = -rounding_addition;
float v = packet.param_value+rounding_addition;
v = constrain(v, -2147483648.0, 2147483647.0);
((AP_Int32 *)vp)->set_and_save(v);
} else if (var_type == AP_PARAM_INT16) {
if (packet.param_value < 0) rounding_addition = -rounding_addition;
float v = packet.param_value+rounding_addition;
v = constrain(v, -32768, 32767);
((AP_Int16 *)vp)->set_and_save(v);
} else if (var_type == AP_PARAM_INT8) {
if (packet.param_value < 0) rounding_addition = -rounding_addition;
float v = packet.param_value+rounding_addition;
v = constrain(v, -128, 127);
((AP_Int8 *)vp)->set_and_save(v);
} else {
// we don't support mavlink set on this parameter
break;
}
// Report back the new value if we accepted the change
// we send the value we actually set, which could be
// different from the value sent, in case someone sent
// a fractional value to an integer type
mavlink_msg_param_value_send(
chan,
key,
vp->cast_to_float(var_type),
mav_var_type(var_type),
_count_parameters(),
-1); // XXX we don't actually know what its index is...
}
break;
} // end case
case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE:
{
// allow override of RC channel values for HIL
// or for complete GCS control of switch position
// and RC PWM values.
if(msg->sysid != g.sysid_my_gcs) break; // Only accept control from our gcs
mavlink_rc_channels_override_t packet;
int16_t v[8];
mavlink_msg_rc_channels_override_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component))
break;
v[0] = packet.chan1_raw;
v[1] = packet.chan2_raw;
v[2] = packet.chan3_raw;
v[3] = packet.chan4_raw;
v[4] = packet.chan5_raw;
v[5] = packet.chan6_raw;
v[6] = packet.chan7_raw;
v[7] = packet.chan8_raw;
hal.rcin->set_overrides(v, 8);
rc_override_fs_timer = millis();
break;
}
case MAVLINK_MSG_ID_HEARTBEAT:
{
// We keep track of the last time we received a heartbeat from our GCS for failsafe purposes
if(msg->sysid != g.sysid_my_gcs) break;
last_heartbeat_ms = rc_override_fs_timer = millis();
pmTest1++;
break;
}
#if HIL_MODE != HIL_MODE_DISABLED
case MAVLINK_MSG_ID_HIL_STATE:
{
mavlink_hil_state_t packet;
mavlink_msg_hil_state_decode(msg, &packet);
float vel = pythagorous2(packet.vx, packet.vy);
float cog = wrap_360_cd(ToDeg(atan2(packet.vy, packet.vx)) * 100);
// set gps hil sensor
g_gps->setHIL(packet.time_usec/1000,
packet.lat*1.0e-7, packet.lon*1.0e-7, packet.alt*1.0e-3,
vel*1.0e-2, cog*1.0e-2, 0, 10);
// rad/sec
Vector3f gyros;
gyros.x = packet.rollspeed;
gyros.y = packet.pitchspeed;
gyros.z = packet.yawspeed;
// m/s/s
Vector3f accels;
accels.x = packet.xacc * (gravity/1000.0);
accels.y = packet.yacc * (gravity/1000.0);
accels.z = packet.zacc * (gravity/1000.0);
ins.set_gyro(gyros);
ins.set_accel(accels);
// approximate a barometer
float y;
const float Temp = 312;
y = (packet.alt - 584000.0) / 29271.267;
y /= (Temp / 10.0) + 273.15;
y = 1.0/exp(y);
y *= 95446.0;
barometer.setHIL(Temp, y);
#if HIL_MODE == HIL_MODE_ATTITUDE
// set AHRS hil sensor. We don't do this in sensors mode, as
// in that case the attitude is computed via DCM
ahrs.setHil(packet.roll,packet.pitch,packet.yaw,packet.rollspeed,
packet.pitchspeed,packet.yawspeed);
#endif
break;
}
#endif // HIL_MODE
#if CAMERA == ENABLED
case MAVLINK_MSG_ID_DIGICAM_CONFIGURE:
{
g.camera.configure_msg(msg);
break;
}
case MAVLINK_MSG_ID_DIGICAM_CONTROL:
{
g.camera.control_msg(msg);
break;
}
#endif // CAMERA == ENABLED
#if MOUNT == ENABLED
case MAVLINK_MSG_ID_MOUNT_CONFIGURE:
{
camera_mount.configure_msg(msg);
break;
}
case MAVLINK_MSG_ID_MOUNT_CONTROL:
{
camera_mount.control_msg(msg);
break;
}
case MAVLINK_MSG_ID_MOUNT_STATUS:
{
camera_mount.status_msg(msg);
break;
}
#endif // MOUNT == ENABLED
case MAVLINK_MSG_ID_RADIO:
{
mavlink_radio_t packet;
mavlink_msg_radio_decode(msg, &packet);
// use the state of the transmit buffer in the radio to
// control the stream rate, giving us adaptive software
// flow control
if (packet.txbuf < 20 && stream_slowdown < 100) {
// we are very low on space - slow down a lot
stream_slowdown += 3;
} else if (packet.txbuf < 50 && stream_slowdown < 100) {
// we are a bit low on space, slow down slightly
stream_slowdown += 1;
} else if (packet.txbuf > 95 && stream_slowdown > 10) {
// the buffer has plenty of space, speed up a lot
stream_slowdown -= 2;
} else if (packet.txbuf > 90 && stream_slowdown != 0) {
// the buffer has enough space, speed up a bit
stream_slowdown--;
}
break;
}
default:
// forward unknown messages to the other link if there is one
if ((chan == MAVLINK_COMM_1 && gcs0.initialised) ||
(chan == MAVLINK_COMM_0 && gcs3.initialised)) {
mavlink_channel_t out_chan = (mavlink_channel_t)(((uint8_t)chan)^1);
// only forward if it would fit in our transmit buffer
if (comm_get_txspace(out_chan) > ((uint16_t)msg->len) + MAVLINK_NUM_NON_PAYLOAD_BYTES) {
_mavlink_resend_uart(out_chan, msg);
}
}
break;
} // end switch
} // end handle mavlink
uint16_t
GCS_MAVLINK::_count_parameters()
{
// if we haven't cached the parameter count yet...
if (0 == _parameter_count) {
AP_Param *vp;
AP_Param::ParamToken token;
vp = AP_Param::first(&token, NULL);
do {
_parameter_count++;
} while (NULL != (vp = AP_Param::next_scalar(&token, NULL)));
}
return _parameter_count;
}
/**
* @brief Send the next pending parameter, called from deferred message
* handling code
*/
void
GCS_MAVLINK::queued_param_send()
{
if (_queued_parameter == NULL) {
return;
}
uint16_t bytes_allowed;
uint8_t count;
uint32_t tnow = millis();
// use at most 30% of bandwidth on parameters. The constant 26 is
// 1/(1000 * 1/8 * 0.001 * 0.3)
bytes_allowed = g.serial3_baud * (tnow - _queued_parameter_send_time_ms) * 26;
if (bytes_allowed > comm_get_txspace(chan)) {
bytes_allowed = comm_get_txspace(chan);
}
count = bytes_allowed / (MAVLINK_MSG_ID_PARAM_VALUE_LEN + MAVLINK_NUM_NON_PAYLOAD_BYTES);
while (_queued_parameter != NULL && count--) {
AP_Param *vp;
float value;
// copy the current parameter and prepare to move to the next
vp = _queued_parameter;
// if the parameter can be cast to float, report it here and break out of the loop
value = vp->cast_to_float(_queued_parameter_type);
char param_name[AP_MAX_NAME_SIZE];
vp->copy_name(param_name, sizeof(param_name), true);
mavlink_msg_param_value_send(
chan,
param_name,
value,
mav_var_type(_queued_parameter_type),
_queued_parameter_count,
_queued_parameter_index);
_queued_parameter = AP_Param::next_scalar(&_queued_parameter_token, &_queued_parameter_type);
_queued_parameter_index++;
}
_queued_parameter_send_time_ms = tnow;
}
/**
* @brief Send the next pending waypoint, called from deferred message
* handling code
*/
void
GCS_MAVLINK::queued_waypoint_send()
{
if (waypoint_receiving &&
waypoint_request_i <= waypoint_request_last) {
mavlink_msg_mission_request_send(
chan,
waypoint_dest_sysid,
waypoint_dest_compid,
waypoint_request_i);
}
}
void GCS_MAVLINK::reset_cli_timeout() {
_cli_timeout = millis();
}
/*
* a delay() callback that processes MAVLink packets. We set this as the
* callback in long running library initialisation routines to allow
* MAVLink to process packets while waiting for the initialisation to
* complete
*/
static void mavlink_delay_cb()
{
static uint32_t last_1hz, last_50hz, last_5s;
if (!gcs0.initialised) return;
in_mavlink_delay = true;
uint32_t tnow = millis();
if (tnow - last_1hz > 1000) {
last_1hz = tnow;
gcs_send_message(MSG_HEARTBEAT);
gcs_send_message(MSG_EXTENDED_STATUS1);
}
if (tnow - last_50hz > 20) {
last_50hz = tnow;
gcs_update();
gcs_data_stream_send();
}
if (tnow - last_5s > 5000) {
last_5s = tnow;
gcs_send_text_P(SEVERITY_LOW, PSTR("Initialising APM..."));
}
#if USB_MUX_PIN > 0
check_usb_mux();
#endif
in_mavlink_delay = false;
}
/*
* send a message on both GCS links
*/
static void gcs_send_message(enum ap_message id)
{
gcs0.send_message(id);
if (gcs3.initialised) {
gcs3.send_message(id);
}
}
/*
* send data streams in the given rate range on both links
*/
static void gcs_data_stream_send(void)
{
gcs0.data_stream_send();
if (gcs3.initialised) {
gcs3.data_stream_send();
}
}
/*
* look for incoming commands on the GCS links
*/
static void gcs_update(void)
{
gcs0.update();
if (gcs3.initialised) {
gcs3.update();
}
}
static void gcs_send_text_P(gcs_severity severity, const prog_char_t *str)
{
gcs0.send_text_P(severity, str);
if (gcs3.initialised) {
gcs3.send_text_P(severity, str);
}
}
/*
* send a low priority formatted message to the GCS
* only one fits in the queue, so if you send more than one before the
* last one gets into the serial buffer then the old one will be lost
*/
void gcs_send_text_fmt(const prog_char_t *fmt, ...)
{
va_list arg_list;
gcs0.pending_status.severity = (uint8_t)SEVERITY_LOW;
va_start(arg_list, fmt);
hal.util->vsnprintf_P((char *)gcs0.pending_status.text,
sizeof(gcs0.pending_status.text), fmt, arg_list);
va_end(arg_list);
gcs3.pending_status = gcs0.pending_status;
mavlink_send_message(MAVLINK_COMM_0, MSG_STATUSTEXT, 0);
if (gcs3.initialised) {
mavlink_send_message(MAVLINK_COMM_1, MSG_STATUSTEXT, 0);
}
}