ardupilot/libraries/AP_BattMonitor/AP_BattMonitor_UAVCAN.cpp

163 lines
5.9 KiB
C++

#include <AP_HAL/AP_HAL.h>
#if HAL_ENABLE_LIBUAVCAN_DRIVERS
#include "AP_BattMonitor.h"
#include "AP_BattMonitor_UAVCAN.h"
#include <AP_CANManager/AP_CANManager.h>
#include <AP_Common/AP_Common.h>
#include <AP_Math/AP_Math.h>
#include <AP_UAVCAN/AP_UAVCAN.h>
#include <uavcan/equipment/power/BatteryInfo.hpp>
#define LOG_TAG "BattMon"
extern const AP_HAL::HAL& hal;
UC_REGISTRY_BINDER(BattInfoCb, uavcan::equipment::power::BatteryInfo);
/// Constructor
AP_BattMonitor_UAVCAN::AP_BattMonitor_UAVCAN(AP_BattMonitor &mon, AP_BattMonitor::BattMonitor_State &mon_state, BattMonitor_UAVCAN_Type type, AP_BattMonitor_Params &params) :
AP_BattMonitor_Backend(mon, mon_state, params),
_type(type)
{
// starts with not healthy
_state.healthy = false;
}
void AP_BattMonitor_UAVCAN::subscribe_msgs(AP_UAVCAN* ap_uavcan)
{
if (ap_uavcan == nullptr) {
return;
}
auto* node = ap_uavcan->get_node();
uavcan::Subscriber<uavcan::equipment::power::BatteryInfo, BattInfoCb> *battinfo_listener;
battinfo_listener = new uavcan::Subscriber<uavcan::equipment::power::BatteryInfo, BattInfoCb>(*node);
// Backend Msg Handler
const int battinfo_listener_res = battinfo_listener->start(BattInfoCb(ap_uavcan, &handle_battery_info_trampoline));
if (battinfo_listener_res < 0) {
AP_HAL::panic("UAVCAN BatteryInfo subscriber start problem\n\r");
return;
}
}
AP_BattMonitor_UAVCAN* AP_BattMonitor_UAVCAN::get_uavcan_backend(AP_UAVCAN* ap_uavcan, uint8_t node_id, uint8_t battery_id)
{
if (ap_uavcan == nullptr) {
return nullptr;
}
for (uint8_t i = 0; i < AP::battery()._num_instances; i++) {
if (AP::battery().drivers[i] == nullptr ||
AP::battery().get_type(i) != AP_BattMonitor::Type::UAVCAN_BatteryInfo) {
continue;
}
AP_BattMonitor_UAVCAN* driver = (AP_BattMonitor_UAVCAN*)AP::battery().drivers[i];
if (driver->_ap_uavcan == ap_uavcan && driver->_node_id == node_id && match_battery_id(i, battery_id)) {
return driver;
}
}
// find empty uavcan driver
for (uint8_t i = 0; i < AP::battery()._num_instances; i++) {
if (AP::battery().drivers[i] != nullptr &&
AP::battery().get_type(i) == AP_BattMonitor::Type::UAVCAN_BatteryInfo &&
match_battery_id(i, battery_id)) {
AP_BattMonitor_UAVCAN* batmon = (AP_BattMonitor_UAVCAN*)AP::battery().drivers[i];
if(batmon->_ap_uavcan != nullptr || batmon->_node_id != 0) {
continue;
}
batmon->_ap_uavcan = ap_uavcan;
batmon->_node_id = node_id;
batmon->init();
AP::can().log_text(AP_CANManager::LOG_INFO,
LOG_TAG,
"Registered BattMonitor Node %d on Bus %d\n",
node_id,
ap_uavcan->get_driver_index());
return batmon;
}
}
return nullptr;
}
void AP_BattMonitor_UAVCAN::handle_battery_info(const BattInfoCb &cb)
{
WITH_SEMAPHORE(_sem_battmon);
_interim_state.voltage = cb.msg->voltage;
_interim_state.current_amps = cb.msg->current;
_soc = cb.msg->state_of_charge_pct;
if (!isnanf(cb.msg->temperature) && cb.msg->temperature > 0) {
// Temperature reported from battery in kelvin and stored internally in Celsius.
_interim_state.temperature = cb.msg->temperature - C_TO_KELVIN;
_interim_state.temperature_time = AP_HAL::millis();
}
uint32_t tnow = AP_HAL::micros();
uint32_t dt = tnow - _interim_state.last_time_micros;
// update total current drawn since startup
if (_interim_state.last_time_micros != 0 && dt < 2000000) {
// .0002778 is 1/3600 (conversion to hours)
float mah = (float) ((double) _interim_state.current_amps * (double) dt * (double) 0.0000002778f);
_interim_state.consumed_mah += mah;
_interim_state.consumed_wh += 0.001f * mah * _interim_state.voltage;
}
// record time
_interim_state.last_time_micros = tnow;
_interim_state.healthy = true;
}
void AP_BattMonitor_UAVCAN::handle_battery_info_trampoline(AP_UAVCAN* ap_uavcan, uint8_t node_id, const BattInfoCb &cb)
{
AP_BattMonitor_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id, cb.msg->battery_id);
if (driver == nullptr) {
return;
}
driver->handle_battery_info(cb);
}
// read - read the voltage and current
void AP_BattMonitor_UAVCAN::read()
{
uint32_t tnow = AP_HAL::micros();
// timeout after 5 seconds
if ((tnow - _interim_state.last_time_micros) > AP_BATTMONITOR_UAVCAN_TIMEOUT_MICROS) {
_interim_state.healthy = false;
}
// Copy over relevant states over to main state
WITH_SEMAPHORE(_sem_battmon);
_state.temperature = _interim_state.temperature;
_state.temperature_time = _interim_state.temperature_time;
_state.voltage = _interim_state.voltage;
_state.current_amps = _interim_state.current_amps;
_state.consumed_mah = _interim_state.consumed_mah;
_state.consumed_wh = _interim_state.consumed_wh;
_state.last_time_micros = _interim_state.last_time_micros;
_state.healthy = _interim_state.healthy;
_has_temperature = (AP_HAL::millis() - _state.temperature_time) <= AP_BATT_MONITOR_TIMEOUT;
}
/// capacity_remaining_pct - returns true if the percentage is valid and writes to percentage argument
bool AP_BattMonitor_UAVCAN::capacity_remaining_pct(uint8_t &percentage) const
{
if ((uint32_t(_params._options.get()) & uint32_t(AP_BattMonitor_Params::Options::Ignore_UAVCAN_SoC)) ||
_soc > 100) {
// a UAVCAN battery monitor may not be able to supply a state of charge. If it can't then
// the user can set the option to use current integration in the backend instead.
return AP_BattMonitor_Backend::capacity_remaining_pct(percentage);
}
percentage = _soc;
return true;
}
#endif