ardupilot/libraries/AP_Compass/AP_Compass_MMC5xx3.cpp

314 lines
9.5 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_Compass_MMC5xx3.h"
#if AP_COMPASS_MMC5XX3_ENABLED
#include <AP_HAL/AP_HAL.h>
#include <stdio.h>
extern const AP_HAL::HAL &hal;
#define REG_PRODUCT_ID 0x2F
#define REG_XOUT_L 0x00
#define REG_STATUS 0x08
#define REG_CONTROL0 0x09
#define REG_CONTROL1 0x0A
#define REG_CONTROL2 0x0B
// bits in REG_CONTROL0
#define REG_CONTROL0_RESET 0x10 // Set coil for measuring offset
#define REG_CONTROL0_SET 0x08 // Reset coil for measuring offset
#define REG_CONTROL0_TMM 0x01 // Take Measurement for Magnetic field
#define REG_CONTROL0_TMT 0x02 // Take Measurement for Temperature
// bits in REG_CONTROL1
#define REG_CONTROL1_SW_RST 0x80 // Software reset
#define REG_CONTROL1_BW0 0x01
#define REG_CONTROL1_BW1 0x02
#define MMC5983_ID 0x30
AP_Compass_Backend *AP_Compass_MMC5XX3::probe(AP_HAL::OwnPtr<AP_HAL::Device> dev,
bool force_external,
enum Rotation rotation)
{
if (!dev) {
return nullptr;
}
AP_Compass_MMC5XX3 *sensor = new AP_Compass_MMC5XX3(std::move(dev), force_external, rotation);
if (!sensor || !sensor->init()) {
delete sensor;
return nullptr;
}
return sensor;
}
AP_Compass_MMC5XX3::AP_Compass_MMC5XX3(AP_HAL::OwnPtr<AP_HAL::Device> _dev,
bool _force_external,
enum Rotation _rotation)
: dev(std::move(_dev))
, force_external(_force_external)
, rotation(_rotation)
, have_initial_offset(false)
{
}
bool AP_Compass_MMC5XX3::init()
{
// take i2c bus sempahore
WITH_SEMAPHORE(dev->get_semaphore());
dev->set_retries(10);
// setup to allow reads on SPI
if (dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI) {
dev->set_read_flag(0x80);
}
// Reading REG_PRODUCT_ID fails sometimes on SPI, so we retry up to 10 times
uint8_t whoami = 0;
uint8_t tries = 10;
while (whoami == 0 && tries > 0) {
tries--;
dev->read_registers(REG_PRODUCT_ID, &whoami, 1);
hal.scheduler->delay(5);
}
if (whoami != MMC5983_ID) {
printf("MMC5983 got unexpected product id: %d, expected: %d\n", whoami, MMC5983_ID);
// not a MMC5983
return false;
}
// reset sensor
dev->write_register(REG_CONTROL1, REG_CONTROL1_SW_RST);
// 10ms minimum startup time
hal.scheduler->delay(15);
// setup for 100Hz output
if (!dev->write_register(REG_CONTROL1, 0)) {
return false;
}
/* register the compass instance in the frontend */
dev->set_device_type(DEVTYPE_MMC5983);
if (!register_compass(dev->get_bus_id(), compass_instance)) {
return false;
}
set_dev_id(compass_instance, dev->get_bus_id());
printf("Found a MMC5983 on 0x%x as compass %u\n", dev->get_bus_id(), compass_instance);
set_rotation(compass_instance, rotation);
if (force_external) {
set_external(compass_instance, true);
}
dev->set_retries(1);
// call timer() at 100Hz
dev->register_periodic_callback(10000U,
FUNCTOR_BIND_MEMBER(&AP_Compass_MMC5XX3::timer, void));
return true;
}
void AP_Compass_MMC5XX3::timer()
{
// recalculate the offset with set/reset operation every measure_count_limit measurements
// sensor is read at about 100Hz, so about every 10 seconds
const uint16_t measure_count_limit = 1000U;
const uint16_t zero_offset = 32768U; // 16 bit mode
const uint16_t sensitivity = 4096U; // counts per Gauss, 16 bit mode
constexpr float counts_to_milliGauss = 1.0e3f / sensitivity;
/*
we use the SET/RESET method to remove bridge offset every
measure_count_limit measurements. This involves a fairly complex
state machine, but means we are much less sensitive to
temperature changes
*/
switch (state) {
// perform a set operation
case MMCState::STATE_SET: {
if (!dev->write_register(REG_CONTROL0, REG_CONTROL0_SET)) {
break;
}
// minimum time to wait after set/reset before take measurement request is 1ms
state = MMCState::STATE_SET_MEASURE;
break;
}
// request a measurement for field and offset calculation after set operation
case MMCState::STATE_SET_MEASURE: {
if (!dev->write_register(REG_CONTROL0, REG_CONTROL0_TMM)) {
break;
}
state = MMCState::STATE_SET_WAIT;
break;
}
// wait for measurement to be ready after set operation, then read the
// measurement data and request a reset operation
case MMCState::STATE_SET_WAIT: {
uint8_t status;
if (!dev->read_registers(REG_STATUS, &status, 1)) {
state = MMCState::STATE_SET;
break;
}
// check if measurement is ready
if (!(status & 1)) {
break;
}
// read measurement
if (!dev->read_registers(REG_XOUT_L, (uint8_t *)&data0[0], 6)) {
state = MMCState::STATE_SET;
break;
}
// request set operation
if (!dev->write_register(REG_CONTROL0, REG_CONTROL0_RESET)) {
break;
}
// minimum time to wait after set/reset before take measurement request is 1ms
state = MMCState::STATE_RESET_MEASURE;
break;
}
// request a measurement for field and offset calculation after reset operation
case MMCState::STATE_RESET_MEASURE: {
// take measurement request
if (!dev->write_register(REG_CONTROL0, REG_CONTROL0_TMM)) {
state = MMCState::STATE_SET;
break;
}
state = MMCState::STATE_RESET_WAIT;
break;
}
// wait for measurement to be ready after reset operation,
// then read the measurement data, calculate the field and offset,
// and begin requesting field measurements
case MMCState::STATE_RESET_WAIT: {
uint8_t status;
if (!dev->read_registers(REG_STATUS, &status, 1)) {
state = MMCState::STATE_SET;
break;
}
// check if measurement is ready
if (!(status & 1)) {
break;
}
uint8_t data1[6];
if (!dev->read_registers(REG_XOUT_L, (uint8_t *)&data1[0], 6)) {
state = MMCState::STATE_SET;
break;
}
/*
calculate field and offset
*/
Vector3f f1 {float((data0[0] << 8) + data0[1]) - zero_offset,
float((data0[2] << 8) + data0[3]) - zero_offset,
float((data0[4] << 8) + data0[5]) - zero_offset};
Vector3f f2 {float((data1[0] << 8) + data1[1]) - zero_offset,
float((data1[2] << 8) + data1[3]) - zero_offset,
float((data1[4] << 8) + data1[5]) - zero_offset};
Vector3f field {(f2 - f1) * counts_to_milliGauss * 0.5f};
Vector3f new_offset {(f1 + f2) * counts_to_milliGauss * 0.5f};
if (!have_initial_offset) {
offset = new_offset;
have_initial_offset = true;
} else {
// low pass changes to the offset
offset = offset * 0.5f + new_offset * 0.5f;
}
accumulate_sample(field, compass_instance);
if (!dev->write_register(REG_CONTROL0, REG_CONTROL0_TMM)) {
printf("failed to initiate measurement\n");
state = MMCState::STATE_SET;
} else {
state = MMCState::STATE_MEASURE;
}
break;
}
// take repeated field measurements, set/reset is performed again after
// measure_count_limit measurements
case MMCState::STATE_MEASURE: {
uint8_t status;
if (!dev->read_registers(REG_STATUS, &status, 1)) {
state = MMCState::STATE_SET;
break;
}
// check if measurement is ready
if (!(status & 1)) {
break;
}
uint8_t data1[6];
if (!dev->read_registers(REG_XOUT_L, (uint8_t *)&data1[0], 6)) {
printf("cant read data\n");
state = MMCState::STATE_SET;
break;
}
Vector3f field {float((data1[0] << 8) + data1[1]) - zero_offset,
float((data1[2] << 8) + data1[3]) - zero_offset,
float((data1[4] << 8) + data1[5]) - zero_offset};
field *= counts_to_milliGauss;
field -= offset;
accumulate_sample(field, compass_instance);
// we stay in STATE_MEASURE for measure_count_limit cycles
if (measure_count++ >= measure_count_limit) {
measure_count = 0;
state = MMCState::STATE_SET;
} else {
if (!dev->write_register(REG_CONTROL0, REG_CONTROL0_TMM)) { // Take Measurement
state = MMCState::STATE_SET;
}
}
break;
}
}
}
void AP_Compass_MMC5XX3::read()
{
drain_accumulated_samples(compass_instance);
}
#endif // AP_COMPASS_MMC5XX3_ENABLED