ardupilot/libraries/SITL/SIM_Plane.cpp
Andrew Tridgell fcfd11ef53 SITL: very simple fixed wing simulator
useful for debugging
2016-01-01 12:41:05 +11:00

203 lines
6.3 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
very simple plane simulator class. Not aerodynamically accurate,
just enough to be able to debug control logic for new frame types
*/
#include "SIM_Plane.h"
#include <stdio.h>
using namespace SITL;
Plane::Plane(const char *home_str, const char *frame_str) :
Aircraft(home_str, frame_str)
{
mass = 1.0f;
/*
scaling from motor power to Newtons. Allows the plane to hold
vertically against gravity when the motor is at hover_throttle
*/
thrust_scale = (mass * GRAVITY_MSS) / hover_throttle;
frame_height = 0.1f;
}
/*
calculate lift in neutons
*/
float Plane::calculate_lift(void) const
{
// simple lift equation from http://wright.nasa.gov/airplane/lifteq.html
const float max_angle = radians(30);
const float max_angle_delta = radians(10);
const float clift_at_max = coefficient.lift * 2 * M_PI_F * max_angle;
float Cl = coefficient.lift * 2 * M_PI_F * angle_of_attack;
if (fabsf(angle_of_attack) > max_angle+max_angle_delta) {
return 0;
}
if (angle_of_attack > max_angle) {
Cl = clift_at_max * (1-(angle_of_attack - max_angle)/max_angle_delta);
} else if (angle_of_attack < -max_angle) {
Cl = -clift_at_max * (1+(angle_of_attack - max_angle)/max_angle_delta);
}
float lift = 0.5 * Cl * air_density * sq(airspeed) * wing_area;
return lift;
}
/*
calculate induced drag in neutons
*/
float Plane::calculate_drag_induced(void) const
{
float lift = calculate_lift();
// simple induced drag from https://en.wikipedia.org/wiki/Lift-induced_drag
if (airspeed < 0.1) {
return 0;
}
float drag_i = sq(lift) / (0.25 * sq(air_density) * sq(airspeed) * wing_area * M_PI_F * wing_efficiency * aspect_ratio);
return drag_i;
}
/*
calculate form drag in neutons
*/
float Plane::calculate_drag_form(void) const
{
// simple form drag
float drag_f = 0.5 * air_density * sq(airspeed) * coefficient.drag;
return drag_f;
}
/*
calculate lift+drag in neutons in body frame
*/
Vector3f Plane::calculate_lift_drag(void) const
{
if (velocity_ef.is_zero()) {
return Vector3f(0,0,0);
}
float lift = calculate_lift();
float drag = calculate_drag_induced() + calculate_drag_form();
return velocity_bf.normalized()*(-drag) + Vector3f(0, 0, -lift);
}
void Plane::calculate_forces(const struct sitl_input &input, Vector3f &rot_accel, Vector3f &body_accel)
{
float aileron = (input.servos[0]-1500)/500.0f;
float elevator = (input.servos[1]-1500)/500.0f;
float rudder = (input.servos[3]-1500)/500.0f;
float throttle = constrain_float((input.servos[2]-1000)/1000.0f, 0, 1);
float speed_scaling = airspeed / cruise_airspeed;
float thrust = throttle;
float roll_rate = aileron * speed_scaling;
float pitch_rate = elevator * speed_scaling;
float yaw_rate = rudder * speed_scaling;
// rotational acceleration, in rad/s/s, in body frame
rot_accel.x = roll_rate * max_rates.x;
rot_accel.y = pitch_rate * max_rates.y;
rot_accel.z = yaw_rate * max_rates.z;
// rotational air resistance
rot_accel.x -= gyro.x * radians(800.0) / terminal_rotation_rate.x;
rot_accel.y -= gyro.y * radians(800.0) / terminal_rotation_rate.y;
rot_accel.z -= gyro.z * radians(1200.0) / terminal_rotation_rate.z;
// add torque of stabilisers
rot_accel.z += velocity_bf.y * speed_scaling * coefficient.vertical_stabiliser;
rot_accel.y -= velocity_bf.z * speed_scaling * coefficient.horizontal_stabiliser;
// velocity in body frame
velocity_bf = dcm.transposed() * velocity_ef;
// calculate angle of attack
angle_of_attack = atan2f(velocity_bf.z, velocity_bf.x);
// get lift and drag in body frame, in neutons
Vector3f lift_drag = calculate_lift_drag();
// air resistance
Vector3f air_resistance = -velocity_ef * (GRAVITY_MSS/terminal_velocity);
// scale thrust to newtons
thrust *= thrust_scale;
accel_body = Vector3f(thrust/mass, 0, 0);
accel_body += lift_drag/mass;
accel_body += dcm.transposed() * air_resistance;
// add some noise
add_noise(thrust / thrust_scale);
}
/*
update the plane simulation by one time step
*/
void Plane::update(const struct sitl_input &input)
{
float delta_time = frame_time_us * 1.0e-6f;
Vector3f rot_accel;
calculate_forces(input, rot_accel, accel_body);
// update rotational rates in body frame
gyro += rot_accel * delta_time;
// update attitude
dcm.rotate(gyro * delta_time);
dcm.normalize();
Vector3f accel_earth = dcm * accel_body;
accel_earth += Vector3f(0, 0, GRAVITY_MSS);
// if we're on the ground, then our vertical acceleration is limited
// to zero. This effectively adds the force of the ground on the aircraft
if (on_ground(position) && accel_earth.z > 0) {
accel_earth.z = 0;
}
// work out acceleration as seen by the accelerometers. It sees the kinematic
// acceleration (ie. real movement), plus gravity
accel_body = dcm.transposed() * (accel_earth + Vector3f(0, 0, -GRAVITY_MSS));
// new velocity vector
velocity_ef += accel_earth * delta_time;
// new position vector
Vector3f old_position = position;
position += velocity_ef * delta_time;
// assume zero wind for now
airspeed = velocity_ef.length();
// constrain height to the ground
if (on_ground(position)) {
if (!on_ground(old_position)) {
printf("Hit ground at %f m/s\n", velocity_ef.z);
position.z = -(ground_level + frame_height - home.alt*0.01f);
}
}
// update lat/lon/altitude
update_position();
}