mirror of https://github.com/ArduPilot/ardupilot
SITL: very simple fixed wing simulator
useful for debugging
This commit is contained in:
parent
cfff57257e
commit
fcfd11ef53
|
@ -0,0 +1,202 @@
|
|||
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||||
/*
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
/*
|
||||
very simple plane simulator class. Not aerodynamically accurate,
|
||||
just enough to be able to debug control logic for new frame types
|
||||
*/
|
||||
|
||||
#include "SIM_Plane.h"
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
using namespace SITL;
|
||||
|
||||
Plane::Plane(const char *home_str, const char *frame_str) :
|
||||
Aircraft(home_str, frame_str)
|
||||
{
|
||||
mass = 1.0f;
|
||||
|
||||
/*
|
||||
scaling from motor power to Newtons. Allows the plane to hold
|
||||
vertically against gravity when the motor is at hover_throttle
|
||||
*/
|
||||
thrust_scale = (mass * GRAVITY_MSS) / hover_throttle;
|
||||
frame_height = 0.1f;
|
||||
}
|
||||
|
||||
/*
|
||||
calculate lift in neutons
|
||||
*/
|
||||
float Plane::calculate_lift(void) const
|
||||
{
|
||||
// simple lift equation from http://wright.nasa.gov/airplane/lifteq.html
|
||||
const float max_angle = radians(30);
|
||||
const float max_angle_delta = radians(10);
|
||||
const float clift_at_max = coefficient.lift * 2 * M_PI_F * max_angle;
|
||||
float Cl = coefficient.lift * 2 * M_PI_F * angle_of_attack;
|
||||
if (fabsf(angle_of_attack) > max_angle+max_angle_delta) {
|
||||
return 0;
|
||||
}
|
||||
if (angle_of_attack > max_angle) {
|
||||
Cl = clift_at_max * (1-(angle_of_attack - max_angle)/max_angle_delta);
|
||||
} else if (angle_of_attack < -max_angle) {
|
||||
Cl = -clift_at_max * (1+(angle_of_attack - max_angle)/max_angle_delta);
|
||||
}
|
||||
float lift = 0.5 * Cl * air_density * sq(airspeed) * wing_area;
|
||||
return lift;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
calculate induced drag in neutons
|
||||
*/
|
||||
float Plane::calculate_drag_induced(void) const
|
||||
{
|
||||
float lift = calculate_lift();
|
||||
|
||||
// simple induced drag from https://en.wikipedia.org/wiki/Lift-induced_drag
|
||||
if (airspeed < 0.1) {
|
||||
return 0;
|
||||
}
|
||||
float drag_i = sq(lift) / (0.25 * sq(air_density) * sq(airspeed) * wing_area * M_PI_F * wing_efficiency * aspect_ratio);
|
||||
return drag_i;
|
||||
}
|
||||
|
||||
/*
|
||||
calculate form drag in neutons
|
||||
*/
|
||||
float Plane::calculate_drag_form(void) const
|
||||
{
|
||||
// simple form drag
|
||||
float drag_f = 0.5 * air_density * sq(airspeed) * coefficient.drag;
|
||||
return drag_f;
|
||||
}
|
||||
|
||||
/*
|
||||
calculate lift+drag in neutons in body frame
|
||||
*/
|
||||
Vector3f Plane::calculate_lift_drag(void) const
|
||||
{
|
||||
if (velocity_ef.is_zero()) {
|
||||
return Vector3f(0,0,0);
|
||||
}
|
||||
float lift = calculate_lift();
|
||||
float drag = calculate_drag_induced() + calculate_drag_form();
|
||||
return velocity_bf.normalized()*(-drag) + Vector3f(0, 0, -lift);
|
||||
}
|
||||
|
||||
void Plane::calculate_forces(const struct sitl_input &input, Vector3f &rot_accel, Vector3f &body_accel)
|
||||
{
|
||||
float aileron = (input.servos[0]-1500)/500.0f;
|
||||
float elevator = (input.servos[1]-1500)/500.0f;
|
||||
float rudder = (input.servos[3]-1500)/500.0f;
|
||||
float throttle = constrain_float((input.servos[2]-1000)/1000.0f, 0, 1);
|
||||
float speed_scaling = airspeed / cruise_airspeed;
|
||||
|
||||
float thrust = throttle;
|
||||
float roll_rate = aileron * speed_scaling;
|
||||
float pitch_rate = elevator * speed_scaling;
|
||||
float yaw_rate = rudder * speed_scaling;
|
||||
|
||||
// rotational acceleration, in rad/s/s, in body frame
|
||||
rot_accel.x = roll_rate * max_rates.x;
|
||||
rot_accel.y = pitch_rate * max_rates.y;
|
||||
rot_accel.z = yaw_rate * max_rates.z;
|
||||
|
||||
// rotational air resistance
|
||||
rot_accel.x -= gyro.x * radians(800.0) / terminal_rotation_rate.x;
|
||||
rot_accel.y -= gyro.y * radians(800.0) / terminal_rotation_rate.y;
|
||||
rot_accel.z -= gyro.z * radians(1200.0) / terminal_rotation_rate.z;
|
||||
|
||||
// add torque of stabilisers
|
||||
rot_accel.z += velocity_bf.y * speed_scaling * coefficient.vertical_stabiliser;
|
||||
rot_accel.y -= velocity_bf.z * speed_scaling * coefficient.horizontal_stabiliser;
|
||||
|
||||
// velocity in body frame
|
||||
velocity_bf = dcm.transposed() * velocity_ef;
|
||||
|
||||
// calculate angle of attack
|
||||
angle_of_attack = atan2f(velocity_bf.z, velocity_bf.x);
|
||||
|
||||
// get lift and drag in body frame, in neutons
|
||||
Vector3f lift_drag = calculate_lift_drag();
|
||||
|
||||
// air resistance
|
||||
Vector3f air_resistance = -velocity_ef * (GRAVITY_MSS/terminal_velocity);
|
||||
|
||||
// scale thrust to newtons
|
||||
thrust *= thrust_scale;
|
||||
|
||||
accel_body = Vector3f(thrust/mass, 0, 0);
|
||||
accel_body += lift_drag/mass;
|
||||
accel_body += dcm.transposed() * air_resistance;
|
||||
|
||||
// add some noise
|
||||
add_noise(thrust / thrust_scale);
|
||||
}
|
||||
|
||||
/*
|
||||
update the plane simulation by one time step
|
||||
*/
|
||||
void Plane::update(const struct sitl_input &input)
|
||||
{
|
||||
float delta_time = frame_time_us * 1.0e-6f;
|
||||
|
||||
Vector3f rot_accel;
|
||||
|
||||
calculate_forces(input, rot_accel, accel_body);
|
||||
|
||||
// update rotational rates in body frame
|
||||
gyro += rot_accel * delta_time;
|
||||
|
||||
// update attitude
|
||||
dcm.rotate(gyro * delta_time);
|
||||
dcm.normalize();
|
||||
|
||||
Vector3f accel_earth = dcm * accel_body;
|
||||
accel_earth += Vector3f(0, 0, GRAVITY_MSS);
|
||||
|
||||
// if we're on the ground, then our vertical acceleration is limited
|
||||
// to zero. This effectively adds the force of the ground on the aircraft
|
||||
if (on_ground(position) && accel_earth.z > 0) {
|
||||
accel_earth.z = 0;
|
||||
}
|
||||
|
||||
// work out acceleration as seen by the accelerometers. It sees the kinematic
|
||||
// acceleration (ie. real movement), plus gravity
|
||||
accel_body = dcm.transposed() * (accel_earth + Vector3f(0, 0, -GRAVITY_MSS));
|
||||
|
||||
// new velocity vector
|
||||
velocity_ef += accel_earth * delta_time;
|
||||
|
||||
// new position vector
|
||||
Vector3f old_position = position;
|
||||
position += velocity_ef * delta_time;
|
||||
|
||||
// assume zero wind for now
|
||||
airspeed = velocity_ef.length();
|
||||
|
||||
// constrain height to the ground
|
||||
if (on_ground(position)) {
|
||||
if (!on_ground(old_position)) {
|
||||
printf("Hit ground at %f m/s\n", velocity_ef.z);
|
||||
position.z = -(ground_level + frame_height - home.alt*0.01f);
|
||||
}
|
||||
}
|
||||
|
||||
// update lat/lon/altitude
|
||||
update_position();
|
||||
}
|
|
@ -0,0 +1,74 @@
|
|||
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||||
/*
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
/*
|
||||
simple plane simulator class
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "SIM_Aircraft.h"
|
||||
|
||||
namespace SITL {
|
||||
|
||||
/*
|
||||
a very simple plane simulator
|
||||
*/
|
||||
class Plane : public Aircraft {
|
||||
public:
|
||||
Plane(const char *home_str, const char *frame_str);
|
||||
|
||||
/* update model by one time step */
|
||||
virtual void update(const struct sitl_input &input);
|
||||
|
||||
/* static object creator */
|
||||
static Aircraft *create(const char *home_str, const char *frame_str) {
|
||||
return new Plane(home_str, frame_str);
|
||||
}
|
||||
|
||||
protected:
|
||||
const float hover_throttle = 0.5f;
|
||||
const float cruise_airspeed = 20;
|
||||
const float cruise_pitch = radians(4);
|
||||
const float terminal_velocity = 35;
|
||||
const float wing_efficiency = 0.9;
|
||||
const float wing_span = 2.0;
|
||||
const float wing_chord = 0.15;
|
||||
const float aspect_ratio = wing_span / wing_chord;
|
||||
const float wing_area = wing_span * wing_chord;
|
||||
const float air_density = 1.225; // kg/m^3 at sea level, ISA conditions
|
||||
float angle_of_attack;
|
||||
Vector3f velocity_bf;
|
||||
|
||||
// manually tweaked coefficients. Not even close to reality
|
||||
struct {
|
||||
float drag = 0.01;
|
||||
float lift = 3.0;
|
||||
float vertical_stabiliser = 0.1;
|
||||
float horizontal_stabiliser = 0.001;
|
||||
} coefficient;
|
||||
|
||||
float thrust_scale;
|
||||
Vector3f terminal_rotation_rate{radians(360), radians(360), radians(180)};
|
||||
Vector3f max_rates{radians(350), radians(250), radians(100)};
|
||||
|
||||
float calculate_lift(void) const;
|
||||
float calculate_drag_induced(void) const;
|
||||
float calculate_drag_form(void) const;
|
||||
Vector3f calculate_lift_drag(void) const;
|
||||
void calculate_forces(const struct sitl_input &input, Vector3f &rot_accel, Vector3f &body_accel);
|
||||
};
|
||||
|
||||
} // namespace SITL
|
Loading…
Reference in New Issue