mirror of https://github.com/ArduPilot/ardupilot
278 lines
7.5 KiB
C++
278 lines
7.5 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#include <AP_HAL.h>
|
|
#if (CONFIG_HAL_BOARD == HAL_BOARD_APM1 || CONFIG_HAL_BOARD == HAL_BOARD_APM2)
|
|
|
|
#include <avr/io.h>
|
|
#include <avr/wdt.h>
|
|
#include <avr/interrupt.h>
|
|
|
|
#include "Scheduler.h"
|
|
#include "utility/ISRRegistry.h"
|
|
#include "memcheck.h"
|
|
using namespace AP_HAL_AVR;
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
/* AVRScheduler timer interrupt period is controlled by TCNT2.
|
|
* 256-124 gives a 500Hz period
|
|
* 256-62 gives a 1kHz period. */
|
|
volatile uint8_t AVRScheduler::_timer2_reset_value = (256 - 62);
|
|
|
|
/* Static AVRScheduler variables: */
|
|
AVRTimer AVRScheduler::_timer;
|
|
|
|
AP_HAL::Proc AVRScheduler::_failsafe = NULL;
|
|
volatile bool AVRScheduler::_timer_suspended = false;
|
|
volatile bool AVRScheduler::_timer_event_missed = false;
|
|
volatile bool AVRScheduler::_in_timer_proc = false;
|
|
AP_HAL::MemberProc AVRScheduler::_timer_proc[AVR_SCHEDULER_MAX_TIMER_PROCS] = {NULL};
|
|
uint8_t AVRScheduler::_num_timer_procs = 0;
|
|
|
|
|
|
AVRScheduler::AVRScheduler() :
|
|
_delay_cb(NULL),
|
|
_min_delay_cb_ms(65535),
|
|
_initialized(false)
|
|
{}
|
|
|
|
void AVRScheduler::init(void* _isrregistry) {
|
|
ISRRegistry* isrregistry = (ISRRegistry*) _isrregistry;
|
|
|
|
/* _timer: sets up timer hardware to implement millis & micros. */
|
|
_timer.init();
|
|
|
|
/* TIMER2: Setup the overflow interrupt to occur at 1khz. */
|
|
TIMSK2 = 0; /* Disable timer interrupt */
|
|
TCCR2A = 0; /* Normal counting mode */
|
|
TCCR2B = _BV(CS21) | _BV(CS22); /* Prescaler to clk/256 */
|
|
TCNT2 = 0; /* Set count to 0 */
|
|
TIFR2 = _BV(TOV2); /* Clear pending interrupts */
|
|
TIMSK2 = _BV(TOIE2); /* Enable overflow interrupt*/
|
|
/* Register _timer_isr_event to trigger on overflow */
|
|
isrregistry->register_signal(ISR_REGISTRY_TIMER2_OVF, _timer_isr_event);
|
|
|
|
/* Turn on global interrupt flag, AVR interupt system will start from this point */
|
|
sei();
|
|
|
|
memcheck_init();
|
|
}
|
|
|
|
uint32_t AVRScheduler::micros() {
|
|
return _timer.micros();
|
|
}
|
|
|
|
uint32_t AVRScheduler::millis() {
|
|
return _timer.millis();
|
|
}
|
|
|
|
/*
|
|
64 bit version of millis(). This wraps at 32 bits on AVR
|
|
*/
|
|
uint64_t AVRScheduler::millis64() {
|
|
return millis();
|
|
}
|
|
|
|
/*
|
|
64 bit version of micros(). This wraps when 32 bit millis() wraps
|
|
*/
|
|
uint64_t AVRScheduler::micros64() {
|
|
// this is slow, but solves the problem with logging uint64_t timestamps
|
|
uint64_t ret = millis();
|
|
ret *= 1000ULL;
|
|
ret += micros() % 1000UL;
|
|
return ret;
|
|
}
|
|
|
|
void AVRScheduler::delay_microseconds(uint16_t us) {
|
|
_timer.delay_microseconds(us);
|
|
}
|
|
|
|
void AVRScheduler::delay(uint16_t ms)
|
|
{
|
|
uint32_t start = _timer.micros();
|
|
|
|
while (ms > 0) {
|
|
while ((_timer.micros() - start) >= 1000) {
|
|
ms--;
|
|
if (ms == 0) break;
|
|
start += 1000;
|
|
}
|
|
if (_min_delay_cb_ms <= ms) {
|
|
if (_delay_cb) {
|
|
_delay_cb();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void AVRScheduler::register_delay_callback(AP_HAL::Proc proc,
|
|
uint16_t min_time_ms) {
|
|
_delay_cb = proc;
|
|
_min_delay_cb_ms = min_time_ms;
|
|
}
|
|
|
|
void AVRScheduler::register_timer_process(AP_HAL::MemberProc proc)
|
|
{
|
|
for (int i = 0; i < _num_timer_procs; i++) {
|
|
if (_timer_proc[i] == proc) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (_num_timer_procs < AVR_SCHEDULER_MAX_TIMER_PROCS) {
|
|
/* this write to _timer_proc can be outside the critical section
|
|
* because that memory won't be used until _num_timer_procs is
|
|
* incremented. */
|
|
_timer_proc[_num_timer_procs] = proc;
|
|
/* _num_timer_procs is used from interrupt, and multiple bytes long. */
|
|
uint8_t sreg = SREG;
|
|
cli();
|
|
_num_timer_procs++;
|
|
SREG = sreg;
|
|
}
|
|
|
|
}
|
|
|
|
void AVRScheduler::register_io_process(AP_HAL::MemberProc proc)
|
|
{
|
|
// IO processes not supported on AVR
|
|
}
|
|
|
|
void AVRScheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us) {
|
|
/* XXX Assert period_us == 1000 */
|
|
_failsafe = failsafe;
|
|
}
|
|
|
|
void AVRScheduler::suspend_timer_procs() {
|
|
_timer_suspended = true;
|
|
}
|
|
|
|
void AVRScheduler::resume_timer_procs() {
|
|
_timer_suspended = false;
|
|
if (_timer_event_missed == true) {
|
|
_run_timer_procs(false);
|
|
_timer_event_missed = false;
|
|
}
|
|
}
|
|
|
|
bool AVRScheduler::in_timerprocess() {
|
|
return _in_timer_proc;
|
|
}
|
|
|
|
void AVRScheduler::_timer_isr_event() {
|
|
// we enable the interrupt again immediately and also enable
|
|
// interrupts. This allows other time critical interrupts to
|
|
// run (such as the serial receive interrupt). We catch the
|
|
// timer calls taking too long using _in_timer_call.
|
|
// This approach also gives us a nice uniform spacing between
|
|
// timer calls
|
|
|
|
TCNT2 = _timer2_reset_value;
|
|
sei();
|
|
_run_timer_procs(true);
|
|
}
|
|
|
|
void AVRScheduler::_run_timer_procs(bool called_from_isr) {
|
|
|
|
if (_in_timer_proc) {
|
|
// the timer calls took longer than the period of the
|
|
// timer. This is bad, and may indicate a serious
|
|
// driver failure. We can't just call the drivers
|
|
// again, as we could run out of stack. So we only
|
|
// call the _failsafe call. It's job is to detect if
|
|
// the drivers or the main loop are indeed dead and to
|
|
// activate whatever failsafe it thinks may help if
|
|
// need be. We assume the failsafe code can't
|
|
// block. If it does then we will recurse and die when
|
|
// we run out of stack
|
|
if (_failsafe != NULL) {
|
|
_failsafe();
|
|
}
|
|
return;
|
|
}
|
|
|
|
_in_timer_proc = true;
|
|
|
|
if (!_timer_suspended) {
|
|
// now call the timer based drivers
|
|
for (int i = 0; i < _num_timer_procs; i++) {
|
|
if (_timer_proc[i]) {
|
|
_timer_proc[i]();
|
|
}
|
|
}
|
|
} else if (called_from_isr) {
|
|
_timer_event_missed = true;
|
|
}
|
|
|
|
// and the failsafe, if one is setup
|
|
if (_failsafe != NULL) {
|
|
_failsafe();
|
|
}
|
|
|
|
_in_timer_proc = false;
|
|
}
|
|
|
|
bool AVRScheduler::system_initializing() {
|
|
return !_initialized;
|
|
}
|
|
|
|
void AVRScheduler::system_initialized() {
|
|
if (_initialized) {
|
|
panic(PSTR("PANIC: scheduler::system_initialized called"
|
|
"more than once"));
|
|
}
|
|
_initialized = true;
|
|
}
|
|
|
|
void AVRScheduler::panic(const prog_char_t* errormsg) {
|
|
/* Suspend timer processes. We still want the timer event to go off
|
|
* to run the _failsafe code, however. */
|
|
_timer_suspended = true;
|
|
/* Print the error message on both ports */
|
|
hal.uartA->println_P(errormsg);
|
|
hal.uartC->println_P(errormsg);
|
|
/* Spin forever. */
|
|
for(;;);
|
|
}
|
|
|
|
void AVRScheduler::reboot(bool hold_in_bootloader) {
|
|
hal.uartA->println_P(PSTR("GOING DOWN FOR A REBOOT\r\n"));
|
|
hal.scheduler->delay(100);
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
|
|
/* The APM2 bootloader will reset the watchdog shortly after
|
|
* starting, so we can use the watchdog to force a reboot
|
|
*/
|
|
cli();
|
|
wdt_enable(WDTO_15MS);
|
|
for(;;);
|
|
#else
|
|
cli();
|
|
/* Making a null pointer call will cause all AVRs to reboot
|
|
* but they may not come back alive properly - we need to setup
|
|
* the IO the way the bootloader would.
|
|
*/
|
|
void (*fn)(void) = NULL;
|
|
fn();
|
|
for(;;);
|
|
#endif
|
|
|
|
}
|
|
|
|
/**
|
|
set timer speed in Hz. Used by ArduCopter on APM2 to reduce the
|
|
cost of timer interrupts
|
|
*/
|
|
void AVRScheduler::set_timer_speed(uint16_t timer_hz)
|
|
{
|
|
if (timer_hz > 1000) {
|
|
timer_hz = 1000;
|
|
}
|
|
if (timer_hz < 250) {
|
|
timer_hz = 250;
|
|
}
|
|
_timer2_reset_value = 256 - (62 * (1000 / timer_hz));
|
|
}
|
|
|
|
#endif
|