ardupilot/libraries/SITL/SIM_Frame.cpp

620 lines
24 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
multicopter frame simulator class
*/
#include "SIM_Frame.h"
#include <AP_Motors/AP_Motors.h>
#include <AP_Baro/AP_Baro.h>
#include <AP_Filesystem/AP_Filesystem.h>
#include "SIM_Aircraft.h"
#include <stdio.h>
#include <sys/stat.h>
using namespace SITL;
static Motor quad_plus_motors[] =
{
Motor(AP_MOTORS_MOT_1, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2),
Motor(AP_MOTORS_MOT_2, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4),
Motor(AP_MOTORS_MOT_3, 0, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1),
Motor(AP_MOTORS_MOT_4, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3),
};
static Motor quad_x_motors[] =
{
Motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1),
Motor(AP_MOTORS_MOT_2, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3),
Motor(AP_MOTORS_MOT_3, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4),
Motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2),
};
// motor order to match betaflight conventions
// See: https://fpvfrenzy.com/betaflight-motor-order/
static Motor quad_bf_x_motors[] =
{
Motor(AP_MOTORS_MOT_1, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2),
Motor(AP_MOTORS_MOT_2, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW,1),
Motor(AP_MOTORS_MOT_3, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW,3),
Motor(AP_MOTORS_MOT_4, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4),
};
// motor order to match betaflight conventions, reversed direction
static Motor quad_bf_x_rev_motors[] =
{
Motor(AP_MOTORS_MOT_1, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2),
Motor(AP_MOTORS_MOT_2, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1),
Motor(AP_MOTORS_MOT_3, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3),
Motor(AP_MOTORS_MOT_4, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4),
};
// motor order to match DJI conventions
// See: https://forum44.djicdn.com/data/attachment/forum/201711/26/172348bppvtt1ot1nrtp5j.jpg
static Motor quad_dji_x_motors[] =
{
Motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1),
Motor(AP_MOTORS_MOT_2, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4),
Motor(AP_MOTORS_MOT_3, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3),
Motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2),
};
// motor order so that test order matches motor order ("clockwise X")
static Motor quad_cw_x_motors[] =
{
Motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1),
Motor(AP_MOTORS_MOT_2, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2),
Motor(AP_MOTORS_MOT_3, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3),
Motor(AP_MOTORS_MOT_4, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4),
};
static Motor tiltquad_h_vectored_motors[] =
{
Motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1, -1, 0, 0, 7, 10, -90),
Motor(AP_MOTORS_MOT_2, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3, -1, 0, 0, 8, 10, -90),
Motor(AP_MOTORS_MOT_3, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4, -1, 0, 0, 8, 10, -90),
Motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2, -1, 0, 0, 7, 10, -90),
};
static Motor hexa_motors[] =
{
Motor(AP_MOTORS_MOT_1, 0, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1),
Motor(AP_MOTORS_MOT_2, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4),
Motor(AP_MOTORS_MOT_3,-120, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 5),
Motor(AP_MOTORS_MOT_4, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2),
Motor(AP_MOTORS_MOT_5, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 6),
Motor(AP_MOTORS_MOT_6, 120, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3)
};
static Motor hexax_motors[] =
{
Motor(AP_MOTORS_MOT_1, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2),
Motor(AP_MOTORS_MOT_2, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5),
Motor(AP_MOTORS_MOT_3, -30, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6),
Motor(AP_MOTORS_MOT_4, 150, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3),
Motor(AP_MOTORS_MOT_5, 30, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1),
Motor(AP_MOTORS_MOT_6,-150, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4)
};
static Motor hexa_dji_x_motors[] =
{
Motor(AP_MOTORS_MOT_1, 30, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1),
Motor(AP_MOTORS_MOT_2, -30, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6),
Motor(AP_MOTORS_MOT_3, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5),
Motor(AP_MOTORS_MOT_4, -150, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4),
Motor(AP_MOTORS_MOT_5, 150, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3),
Motor(AP_MOTORS_MOT_6, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2)
};
static Motor hexa_cw_x_motors[] =
{
Motor(AP_MOTORS_MOT_1, 30, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1),
Motor(AP_MOTORS_MOT_2, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2),
Motor(AP_MOTORS_MOT_3, 150, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3),
Motor(AP_MOTORS_MOT_4, -150, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4),
Motor(AP_MOTORS_MOT_5, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5),
Motor(AP_MOTORS_MOT_6, -30, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6)
};
static Motor octa_motors[] =
{
Motor(AP_MOTORS_MOT_1, 0, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1),
Motor(AP_MOTORS_MOT_2, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 5),
Motor(AP_MOTORS_MOT_3, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2),
Motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4),
Motor(AP_MOTORS_MOT_5, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 8),
Motor(AP_MOTORS_MOT_6, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 6),
Motor(AP_MOTORS_MOT_7, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 7),
Motor(AP_MOTORS_MOT_8, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3)
};
static Motor octa_dji_x_motors[] =
{
Motor(AP_MOTORS_MOT_1, 22.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1),
Motor(AP_MOTORS_MOT_2, -22.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 8),
Motor(AP_MOTORS_MOT_3, -67.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 7),
Motor(AP_MOTORS_MOT_4, -112.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6),
Motor(AP_MOTORS_MOT_5, -157.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5),
Motor(AP_MOTORS_MOT_6, 157.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4),
Motor(AP_MOTORS_MOT_7, 112.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3),
Motor(AP_MOTORS_MOT_8, 67.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2)
};
static Motor octa_cw_x_motors[] =
{
Motor(AP_MOTORS_MOT_1, 22.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1),
Motor(AP_MOTORS_MOT_2, 67.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2),
Motor(AP_MOTORS_MOT_3, 112.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3),
Motor(AP_MOTORS_MOT_4, 157.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4),
Motor(AP_MOTORS_MOT_5, -157.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5),
Motor(AP_MOTORS_MOT_6, -112.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6),
Motor(AP_MOTORS_MOT_7, -67.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 7),
Motor(AP_MOTORS_MOT_8, -22.5f, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 8)
};
static Motor octa_quad_motors[] =
{
Motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1),
Motor(AP_MOTORS_MOT_2, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 7),
Motor(AP_MOTORS_MOT_3, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5),
Motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3),
Motor(AP_MOTORS_MOT_5, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 8),
Motor(AP_MOTORS_MOT_6, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2),
Motor(AP_MOTORS_MOT_7, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4),
Motor(AP_MOTORS_MOT_8, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6)
};
static Motor octa_quad_cw_x_motors[] =
{
Motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1),
Motor(AP_MOTORS_MOT_2, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2),
Motor(AP_MOTORS_MOT_3, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3),
Motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4),
Motor(AP_MOTORS_MOT_5, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5),
Motor(AP_MOTORS_MOT_6, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6),
Motor(AP_MOTORS_MOT_7, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 7),
Motor(AP_MOTORS_MOT_8, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 8)
};
static Motor dodeca_hexa_motors[] =
{
Motor(AP_MOTORS_MOT_1, 30, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1),
Motor(AP_MOTORS_MOT_2, 30, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2),
Motor(AP_MOTORS_MOT_3, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3),
Motor(AP_MOTORS_MOT_4, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4),
Motor(AP_MOTORS_MOT_5, 150, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5),
Motor(AP_MOTORS_MOT_6, 150, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6),
Motor(AP_MOTORS_MOT_7, -150, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 7),
Motor(AP_MOTORS_MOT_8, -150, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 8),
Motor(AP_MOTORS_MOT_9, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 9),
Motor(AP_MOTORS_MOT_10, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 10),
Motor(AP_MOTORS_MOT_11, -30, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 11),
Motor(AP_MOTORS_MOT_12, -30, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 12)
};
static Motor deca_motors[] =
{
Motor(AP_MOTORS_MOT_1, 0, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1),
Motor(AP_MOTORS_MOT_2, 36, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2),
Motor(AP_MOTORS_MOT_3, 72, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3),
Motor(AP_MOTORS_MOT_4, 108, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4),
Motor(AP_MOTORS_MOT_5, 144, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5),
Motor(AP_MOTORS_MOT_6, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6),
Motor(AP_MOTORS_MOT_7, -144, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 7),
Motor(AP_MOTORS_MOT_8, -108, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 8),
Motor(AP_MOTORS_MOT_9, -72, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 9),
Motor(AP_MOTORS_MOT_10, -36, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 10)
};
static Motor deca_cw_x_motors[] =
{
Motor(AP_MOTORS_MOT_1, 18, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1),
Motor(AP_MOTORS_MOT_2, 54, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2),
Motor(AP_MOTORS_MOT_3, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3),
Motor(AP_MOTORS_MOT_4, 126, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4),
Motor(AP_MOTORS_MOT_5, 162, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5),
Motor(AP_MOTORS_MOT_6, -162, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6),
Motor(AP_MOTORS_MOT_7, -126, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 7),
Motor(AP_MOTORS_MOT_8, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 8),
Motor(AP_MOTORS_MOT_9, -54, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 9),
Motor(AP_MOTORS_MOT_10, -18, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 10)
};
static Motor tri_motors[] =
{
Motor(AP_MOTORS_MOT_1, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1),
Motor(AP_MOTORS_MOT_2, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3),
Motor(AP_MOTORS_MOT_4, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2, AP_MOTORS_MOT_7, 60, -60, -1, 0, 0),
};
static Motor tilttri_motors[] =
{
Motor(AP_MOTORS_MOT_1, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1, -1, 0, 0, AP_MOTORS_MOT_8, 0, -90),
Motor(AP_MOTORS_MOT_2, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3, -1, 0, 0, AP_MOTORS_MOT_8, 0, -90),
Motor(AP_MOTORS_MOT_4, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2, AP_MOTORS_MOT_7, 60, -60, -1, 0, 0),
};
static Motor tilttri_vectored_motors[] =
{
Motor(AP_MOTORS_MOT_1, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1, -1, 0, 0, 7, 10, -90),
Motor(AP_MOTORS_MOT_2, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3, -1, 0, 0, 8, 10, -90),
Motor(AP_MOTORS_MOT_4, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2)
};
static Motor y6_motors[] =
{
Motor(AP_MOTORS_MOT_1, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2),
Motor(AP_MOTORS_MOT_2, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 5),
Motor(AP_MOTORS_MOT_3, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 6),
Motor(AP_MOTORS_MOT_4, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4),
Motor(AP_MOTORS_MOT_5, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1),
Motor(AP_MOTORS_MOT_6, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3)
};
/*
FireflyY6 is a Y6 with front motors tiltable using servo on channel 9 (output 8)
*/
static Motor firefly_motors[] =
{
Motor(AP_MOTORS_MOT_1, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3),
Motor(AP_MOTORS_MOT_2, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1, -1, 0, 0, 6, 0, -90),
Motor(AP_MOTORS_MOT_3, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5, -1, 0, 0, 6, 0, -90),
Motor(AP_MOTORS_MOT_4, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4),
Motor(AP_MOTORS_MOT_5, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2, -1, 0, 0, 6, 0, -90),
Motor(AP_MOTORS_MOT_6, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6, -1, 0, 0, 6, 0, -90)
};
/*
table of supported frame types. String order is important for
partial name matching
*/
static Frame supported_frames[] =
{
Frame("+", 4, quad_plus_motors),
Frame("quad", 4, quad_plus_motors),
Frame("copter", 4, quad_plus_motors),
Frame("x", 4, quad_x_motors),
Frame("bfxrev", 4, quad_bf_x_rev_motors),
Frame("bfx", 4, quad_bf_x_motors),
Frame("djix", 4, quad_dji_x_motors),
Frame("cwx", 4, quad_cw_x_motors),
Frame("tilthvec", 4, tiltquad_h_vectored_motors),
Frame("hexax", 6, hexax_motors),
Frame("hexa-cwx", 6, hexa_cw_x_motors),
Frame("hexa-dji", 6, hexa_dji_x_motors),
Frame("hexa", 6, hexa_motors),
Frame("octa-cwx", 8, octa_cw_x_motors),
Frame("octa-dji", 8, octa_dji_x_motors),
Frame("octa-quad-cwx",8, octa_quad_cw_x_motors),
Frame("octa-quad", 8, octa_quad_motors),
Frame("octa", 8, octa_motors),
Frame("deca", 10, deca_motors),
Frame("deca-cwx", 10, deca_cw_x_motors),
Frame("dodeca-hexa", 12, dodeca_hexa_motors),
Frame("tri", 3, tri_motors),
Frame("tilttrivec",3, tilttri_vectored_motors),
Frame("tilttri", 3, tilttri_motors),
Frame("y6", 6, y6_motors),
Frame("firefly", 6, firefly_motors)
};
// get air density in kg/m^3
float Frame::get_air_density(float alt_amsl) const
{
float sigma, delta, theta;
AP_Baro::SimpleAtmosphere(alt_amsl * 0.001f, sigma, delta, theta);
const float air_pressure = SSL_AIR_PRESSURE * delta;
return air_pressure / (ISA_GAS_CONSTANT * (C_TO_KELVIN(model.refTempC)));
}
#if USE_PICOJSON
/*
load frame specific parameters from a json file if available
*/
void Frame::load_frame_params(const char *model_json)
{
char *fname = nullptr;
struct stat st;
if (AP::FS().stat(model_json, &st) == 0) {
fname = strdup(model_json);
} else {
IGNORE_RETURN(asprintf(&fname, "@ROMFS/models/%s", model_json));
if (AP::FS().stat(model_json, &st) != 0) {
AP_HAL::panic("%s failed to load\n", model_json);
}
}
if (fname == nullptr) {
AP_HAL::panic("%s failed to load\n", model_json);
}
picojson::value *obj = (picojson::value *)load_json(model_json);
if (obj == nullptr) {
AP_HAL::panic("%s failed to load\n", model_json);
}
enum class VarType {
FLOAT,
VECTOR3F,
};
struct json_search {
const char *label;
void *ptr;
VarType t;
};
json_search vars[] = {
#define FRAME_VAR(s) { #s, &model.s, VarType::FLOAT }
FRAME_VAR(mass),
FRAME_VAR(diagonal_size),
FRAME_VAR(refSpd),
FRAME_VAR(refAngle),
FRAME_VAR(refVoltage),
FRAME_VAR(refCurrent),
FRAME_VAR(refAlt),
FRAME_VAR(refTempC),
FRAME_VAR(maxVoltage),
FRAME_VAR(battCapacityAh),
FRAME_VAR(refBatRes),
FRAME_VAR(propExpo),
FRAME_VAR(refRotRate),
FRAME_VAR(hoverThrOut),
FRAME_VAR(pwmMin),
FRAME_VAR(pwmMax),
FRAME_VAR(spin_min),
FRAME_VAR(spin_max),
FRAME_VAR(slew_max),
FRAME_VAR(disc_area),
FRAME_VAR(mdrag_coef),
{"moment_inertia", &model.moment_of_inertia, VarType::VECTOR3F},
FRAME_VAR(num_motors),
};
for (uint8_t i=0; i<ARRAY_SIZE(vars); i++) {
auto v = obj->get(vars[i].label);
if (v.is<picojson::null>()) {
// use default value
continue;
}
if (vars[i].t == VarType::FLOAT) {
parse_float(v, vars[i].label, *((float *)vars[i].ptr));
} else if (vars[i].t == VarType::VECTOR3F) {
parse_vector3(v, vars[i].label, *(Vector3f *)vars[i].ptr);
}
}
json_search per_motor_vars[] = {
{"position", &model.motor_pos, VarType::VECTOR3F},
{"vector", &model.motor_thrust_vec, VarType::VECTOR3F},
{"yaw", &model.yaw_factor, VarType::FLOAT},
};
char label_name[20];
for (uint8_t i=0; i<ARRAY_SIZE(per_motor_vars); i++) {
for (uint8_t j=0; j<12; j++) {
snprintf(label_name, 20, "motor%i_%s", j+1, per_motor_vars[i].label);
auto v = obj->get(label_name);
if (v.is<picojson::null>()) {
// use default value
continue;
}
if (per_motor_vars[i].t == VarType::FLOAT) {
parse_float(v, label_name, *(((float *)per_motor_vars[i].ptr) + j));
} else if (per_motor_vars[i].t == VarType::VECTOR3F) {
parse_vector3(v, label_name, *(((Vector3f *)per_motor_vars[i].ptr) + j));
}
}
}
delete obj;
::printf("Loaded model params from %s\n", model_json);
}
void Frame::parse_float(picojson::value val, const char* label, float &param) {
if (!val.is<double>()) {
AP_HAL::panic("Bad json type for %s: %s", label, val.to_str().c_str());
}
param = val.get<double>();
}
void Frame::parse_vector3(picojson::value val, const char* label, Vector3f &param) {
if (!val.is<picojson::array>() || !val.contains(2) || val.contains(3)) {
AP_HAL::panic("Bad json type for %s: %s", label, val.to_str().c_str());
}
for (uint8_t j=0; j<3; j++) {
parse_float(val.get(j), label, param[j]);
}
}
#endif
#if AP_SIM_ENABLED
/*
initialise the frame
*/
void Frame::init(const char *frame_str, Battery *_battery)
{
model = default_model;
battery = _battery;
#if USE_PICOJSON
const char *colon = strchr(frame_str, ':');
size_t slen = strlen(frame_str);
if (colon != nullptr && slen > 5 && strcmp(&frame_str[slen-5], ".json") == 0) {
load_frame_params(colon+1);
}
#endif
mass = model.mass;
const float drag_force = model.mass * GRAVITY_MSS * tanf(radians(model.refAngle));
const float cos_tilt = cosf(radians(model.refAngle));
const float airspeed_bf = model.refSpd * cos_tilt;
const float ref_thrust = model.mass * GRAVITY_MSS / cos_tilt;
float ref_air_density = get_air_density(model.refAlt);
const float momentum_drag = cos_tilt * model.mdrag_coef * airspeed_bf * sqrtf(ref_thrust * ref_air_density * model.disc_area);
if (momentum_drag > drag_force) {
model.mdrag_coef *= drag_force / momentum_drag;
areaCd = 0.0;
::printf("Suggested EK3_DRAG_BCOEF_* = 0, EK3_DRAG_MCOEF = %.3f\n", (momentum_drag / (model.mass * airspeed_bf)) * sqrtf(1.225f / ref_air_density));
} else {
areaCd = (drag_force - momentum_drag) / (0.5f * ref_air_density * sq(model.refSpd));
::printf("Suggested EK3_DRAG_BCOEF_* = %.3f, EK3_DRAG_MCOEF = %.3f\n", model.mass / areaCd, (momentum_drag / (model.mass * airspeed_bf)) * sqrtf(1.225f / ref_air_density));
}
terminal_rotation_rate = model.refRotRate;
float hover_thrust = mass * GRAVITY_MSS;
float hover_power = model.refCurrent * model.refVoltage;
float hover_velocity_out = 2 * hover_power / hover_thrust;
float effective_disc_area = hover_thrust / (0.5 * ref_air_density * sq(hover_velocity_out));
float velocity_max = hover_velocity_out / sqrtf(model.hoverThrOut);
float effective_prop_area = effective_disc_area / num_motors;
float true_prop_area = model.disc_area / num_motors;
// power_factor is ratio of power consumed per newton of thrust
float power_factor = hover_power / hover_thrust;
battery->setup(model.battCapacityAh, model.refBatRes, model.maxVoltage);
if (uint8_t(model.num_motors) != num_motors) {
::printf("Warning model expected %u motors and got %u\n", uint8_t(model.num_motors), num_motors);
}
for (uint8_t i=0; i<num_motors; i++) {
motors[i].setup_params(model.pwmMin, model.pwmMax, model.spin_min, model.spin_max, model.propExpo, model.slew_max,
model.diagonal_size, power_factor, model.maxVoltage, effective_prop_area, velocity_max,
model.motor_pos[i], model.motor_thrust_vec[i], model.yaw_factor[i], true_prop_area,
model.mdrag_coef);
}
if (is_zero(model.moment_of_inertia.x) || is_zero(model.moment_of_inertia.y) || is_zero(model.moment_of_inertia.z)) {
// if no inertia provided, assume 50% of mass on ring around center
model.moment_of_inertia.x = model.mass * 0.25 * sq(model.diagonal_size*0.5);
model.moment_of_inertia.y = model.moment_of_inertia.x;
model.moment_of_inertia.z = model.mass * 0.5 * sq(model.diagonal_size*0.5);
}
// setup reasonable defaults for battery
AP_Param::set_default_by_name("SIM_BATT_VOLTAGE", model.maxVoltage);
AP_Param::set_default_by_name("SIM_BATT_CAP_AH", model.battCapacityAh);
if (model.battCapacityAh > 0) {
AP_Param::set_default_by_name("BATT_CAPACITY", model.battCapacityAh*1000);
}
}
/*
find a frame by name
*/
Frame *Frame::find_frame(const char *name)
{
for (uint8_t i=0; i < ARRAY_SIZE(supported_frames); i++) {
// do partial name matching to allow for frame variants
if (strncasecmp(name, supported_frames[i].name, strlen(supported_frames[i].name)) == 0) {
return &supported_frames[i];
}
}
return nullptr;
}
// calculate rotational and linear accelerations
void Frame::calculate_forces(const Aircraft &aircraft,
const struct sitl_input &input,
Vector3f &rot_accel,
Vector3f &body_accel,
float* rpm,
bool use_drag)
{
Vector3f thrust; // newtons
Vector3f torque;
const float air_density = get_air_density(aircraft.get_location().alt*0.01);
const Vector3f gyro = aircraft.get_gyro();
Vector3f vel_air_bf = aircraft.get_dcm().transposed() * aircraft.get_velocity_air_ef();
const auto *_sitl = AP::sitl();
for (uint8_t i=0; i<num_motors; i++) {
Vector3f mtorque, mthrust;
motors[i].calculate_forces(input, motor_offset, mtorque, mthrust, vel_air_bf, gyro, air_density, battery->get_voltage(), use_drag);
torque += mtorque;
thrust += mthrust;
// simulate motor rpm
if (!is_zero(_sitl->vibe_motor)) {
rpm[motor_offset+i] = motors[i].get_command() * AP::sitl()->vibe_motor * 60.0f;
}
}
// calculate total rotational acceleration
rot_accel.x = torque.x / model.moment_of_inertia.x;
rot_accel.y = torque.y / model.moment_of_inertia.y;
rot_accel.z = torque.z / model.moment_of_inertia.z;
if (terminal_rotation_rate > 0) {
// rotational air resistance
rot_accel.x -= gyro.x * radians(400.0) / terminal_rotation_rate;
rot_accel.y -= gyro.y * radians(400.0) / terminal_rotation_rate;
rot_accel.z -= gyro.z * radians(400.0) / terminal_rotation_rate;
}
if (use_drag) {
// use the model params to calculate drag
Vector3f drag_bf;
drag_bf.x = areaCd * 0.5f * air_density * sq(vel_air_bf.x);
if (is_negative(vel_air_bf.x)) {
drag_bf.x = -drag_bf.x;
}
drag_bf.y = areaCd * 0.5f * air_density * sq(vel_air_bf.y);
if (is_negative(vel_air_bf.y)) {
drag_bf.y = -drag_bf.y;
}
drag_bf.z = areaCd * 0.5f * air_density * sq(vel_air_bf.z);
if (is_negative(vel_air_bf.z)) {
drag_bf.z = -drag_bf.z;
}
thrust -= drag_bf;
}
body_accel = thrust/aircraft.gross_mass();
}
// calculate current and voltage
void Frame::current_and_voltage(float &voltage, float &current)
{
float param_voltage = AP::sitl()->batt_voltage;
if (!is_equal(last_param_voltage,param_voltage)) {
battery->init_voltage(param_voltage);
last_param_voltage = param_voltage;
}
voltage = battery->get_voltage();
current = 0;
for (uint8_t i=0; i<num_motors; i++) {
current += motors[i].get_current();
}
}
#endif // AP_SIM_ENABLED