ardupilot/libraries/AC_PrecLand/AC_PrecLand.cpp
2016-07-04 16:57:06 +09:00

193 lines
5.4 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL/AP_HAL.h>
#include "AC_PrecLand.h"
#include "AC_PrecLand_Backend.h"
#include "AC_PrecLand_Companion.h"
#include "AC_PrecLand_IRLock.h"
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AC_PrecLand::var_info[] = {
// @Param: ENABLED
// @DisplayName: Precision Land enabled/disabled and behaviour
// @Description: Precision Land enabled/disabled and behaviour
// @Values: 0:Disabled, 1:Enabled Always Land, 2:Enabled Strict
// @User: Advanced
AP_GROUPINFO("ENABLED", 0, AC_PrecLand, _enabled, 0),
// @Param: TYPE
// @DisplayName: Precision Land Type
// @Description: Precision Land Type
// @Values: 0:None, 1:CompanionComputer, 2:IRLock
// @User: Advanced
AP_GROUPINFO("TYPE", 1, AC_PrecLand, _type, 0),
AP_GROUPEND
};
// Default constructor.
// Note that the Vector/Matrix constructors already implicitly zero
// their values.
//
AC_PrecLand::AC_PrecLand(const AP_AHRS& ahrs, const AP_InertialNav& inav) :
_ahrs(ahrs),
_inav(inav),
_last_update_ms(0),
_backend(NULL)
{
// set parameters to defaults
AP_Param::setup_object_defaults(this, var_info);
// other initialisation
_backend_state.healthy = false;
}
// init - perform any required initialisation of backends
void AC_PrecLand::init()
{
// exit immediately if init has already been run
if (_backend != NULL) {
return;
}
// default health to false
_backend = NULL;
_backend_state.healthy = false;
// instantiate backend based on type parameter
switch ((enum PrecLandType)(_type.get())) {
// no type defined
case PRECLAND_TYPE_NONE:
default:
return;
// companion computer
case PRECLAND_TYPE_COMPANION:
_backend = new AC_PrecLand_Companion(*this, _backend_state);
break;
// IR Lock
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
case PRECLAND_TYPE_IRLOCK:
_backend = new AC_PrecLand_IRLock(*this, _backend_state);
break;
#endif
}
// init backend
if (_backend != NULL) {
_backend->init();
}
}
// update - give chance to driver to get updates from sensor
void AC_PrecLand::update(float alt_above_terrain_cm)
{
// run backend update
if (_backend != NULL) {
// read from sensor
_backend->update();
// calculate angles to target and position estimate
calc_angles_and_pos(alt_above_terrain_cm);
}
}
bool AC_PrecLand::target_acquired()
{
return (AP_HAL::millis()-_last_update_ms) < 1000;
}
bool AC_PrecLand::get_target_position(Vector3f& ret)
{
if (!target_acquired()) {
return false;
}
ret = _target_pos;
return true;
}
bool AC_PrecLand::get_target_position_relative(Vector3f& ret)
{
if (!target_acquired()) {
return false;
}
ret = _target_pos_rel;
return true;
}
bool AC_PrecLand::get_target_velocity_relative(Vector3f& ret)
{
return false;
}
// converts sensor's body-frame angles to earth-frame angles and position estimate
// raw sensor angles stored in _angle_to_target (might be in earth frame, or maybe body frame)
// earth-frame angles stored in _ef_angle_to_target
// position estimate is stored in _target_pos
void AC_PrecLand::calc_angles_and_pos(float alt_above_terrain_cm)
{
// exit immediately if not enabled
if (_backend == NULL) {
return;
}
// get angles to target from backend
if (!_backend->get_angle_to_target(_angle_to_target.x, _angle_to_target.y)) {
return;
}
_angle_to_target.x = -_angle_to_target.x;
_angle_to_target.y = -_angle_to_target.y;
// compensate for delay
_angle_to_target.x -= _ahrs.get_gyro().x*4.0e-2f;
_angle_to_target.y -= _ahrs.get_gyro().y*4.0e-2f;
Vector3f target_vec_ned;
if (_angle_to_target.is_zero()) {
target_vec_ned = Vector3f(0.0f,0.0f,1.0f);
} else {
float theta = _angle_to_target.length();
Vector3f axis = Vector3f(_angle_to_target.x, _angle_to_target.y, 0.0f)/theta;
float sin_theta = sinf(theta);
float cos_theta = cosf(theta);
target_vec_ned.x = axis.x*axis.z*(1.0f - cos_theta) + axis.y*sin_theta;
target_vec_ned.y = axis.y*axis.z*(1.0f - cos_theta) - axis.x*sin_theta;
target_vec_ned.z = cos_theta + sq(axis.z)*(1.0f-cos_theta);
}
// rotate into NED frame
target_vec_ned = _ahrs.get_rotation_body_to_ned()*target_vec_ned;
// extract the angles to target (logging only)
_ef_angle_to_target.x = atan2f(target_vec_ned.z,target_vec_ned.x);
_ef_angle_to_target.y = atan2f(target_vec_ned.z,target_vec_ned.y);
// ensure that the angle to target is no more than 70 degrees
if (target_vec_ned.z > 0.26f) {
// get current altitude (constrained to be positive)
float alt = MAX(alt_above_terrain_cm, 0.0f);
float dist = alt/target_vec_ned.z;
//
_target_pos_rel.x = target_vec_ned.x*dist;
_target_pos_rel.y = target_vec_ned.y*dist;
_target_pos_rel.z = alt; // not used
_target_pos = _inav.get_position()+_target_pos_rel;
_last_update_ms = AP_HAL::millis();
}
}
// handle_msg - Process a LANDING_TARGET mavlink message
void AC_PrecLand::handle_msg(mavlink_message_t* msg)
{
// run backend update
if (_backend != NULL) {
_backend->handle_msg(msg);
}
}