ardupilot/libraries/AP_Math/vectorN.h

175 lines
3.9 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <cmath>
#include <string.h>
#include "matrixN.h"
#ifndef MATH_CHECK_INDEXES
# define MATH_CHECK_INDEXES 0
#endif
#if MATH_CHECK_INDEXES
#include <assert.h>
#endif
template <typename T, uint8_t N>
class MatrixN;
template <typename T, uint8_t N>
class VectorN
{
public:
// trivial ctor
inline VectorN<T,N>() {
memset(_v, 0, sizeof(T)*N);
}
// vector ctor
inline VectorN<T,N>(const T *v) {
memcpy(_v, v, sizeof(T)*N);
}
inline T & operator[](uint8_t i) {
#if MATH_CHECK_INDEXES
assert(i >= 0 && i < N);
#endif
return _v[i];
}
inline const T & operator[](uint8_t i) const {
#if MATH_CHECK_INDEXES
assert(i >= 0 && i < N);
#endif
return _v[i];
}
// test for equality
bool operator ==(const VectorN<T,N> &v) const {
for (uint8_t i=0; i<N; i++) {
if (_v[i] != v[i]) return false;
}
return true;
}
// zero the vector
inline void zero()
{
memset(_v, 0, sizeof(T)*N);
}
// negation
VectorN<T,N> operator -(void) const {
VectorN<T,N> v2;
for (uint8_t i=0; i<N; i++) {
v2[i] = - _v[i];
}
return v2;
}
// addition
VectorN<T,N> operator +(const VectorN<T,N> &v) const {
VectorN<T,N> v2;
for (uint8_t i=0; i<N; i++) {
v2[i] = _v[i] + v[i];
}
return v2;
}
// subtraction
VectorN<T,N> operator -(const VectorN<T,N> &v) const {
VectorN<T,N> v2;
for (uint8_t i=0; i<N; i++) {
v2[i] = _v[i] - v[i];
}
return v2;
}
// uniform scaling
VectorN<T,N> operator *(const T num) const {
VectorN<T,N> v2;
for (uint8_t i=0; i<N; i++) {
v2[i] = _v[i] * num;
}
return v2;
}
// uniform scaling
VectorN<T,N> operator /(const T num) const {
VectorN<T,N> v2;
for (uint8_t i=0; i<N; i++) {
v2[i] = _v[i] / num;
}
return v2;
}
// addition
VectorN<T,N> &operator +=(const VectorN<T,N> &v) {
for (uint8_t i=0; i<N; i++) {
_v[i] += v[i];
}
return *this;
}
// subtraction
VectorN<T,N> &operator -=(const VectorN<T,N> &v) {
for (uint8_t i=0; i<N; i++) {
_v[i] -= v[i];
}
return *this;
}
// uniform scaling
VectorN<T,N> &operator *=(const T num) {
for (uint8_t i=0; i<N; i++) {
_v[i] *= num;
}
return *this;
}
// uniform scaling
VectorN<T,N> &operator /=(const T num) {
for (uint8_t i=0; i<N; i++) {
_v[i] /= num;
}
return *this;
}
// dot product
T operator *(const VectorN<T,N> &v) const {
float ret = 0;
for (uint8_t i=0; i<N; i++) {
ret += _v[i] * v._v[i];
}
return ret;
}
// multiplication of a matrix by a vector, in-place
// C = A * B
void mult(const MatrixN<T,N> &A, const VectorN<T,N> &B) {
for (uint8_t i = 0; i < N; i++) {
_v[i] = 0;
for (uint8_t k = 0; k < N; k++) {
_v[i] += A.v[i][k] * B[k];
}
}
}
private:
T _v[N];
};