mirror of https://github.com/ArduPilot/ardupilot
455 lines
17 KiB
C++
455 lines
17 KiB
C++
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
* AP_MotorsMatrix.cpp - ArduCopter motors library
|
|
* Code by RandyMackay. DIYDrones.com
|
|
*
|
|
*/
|
|
#include <AP_HAL.h>
|
|
#include "AP_MotorsMatrix.h"
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
// Init
|
|
void AP_MotorsMatrix::Init()
|
|
{
|
|
// call parent Init function to set-up throttle curve
|
|
AP_Motors::Init();
|
|
|
|
// setup the motors
|
|
setup_motors();
|
|
|
|
// enable fast channels or instant pwm
|
|
set_update_rate(_speed_hz);
|
|
}
|
|
|
|
// set update rate to motors - a value in hertz
|
|
void AP_MotorsMatrix::set_update_rate( uint16_t speed_hz )
|
|
{
|
|
int8_t i;
|
|
|
|
// record requested speed
|
|
_speed_hz = speed_hz;
|
|
|
|
// check each enabled motor
|
|
uint32_t mask = 0;
|
|
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
|
if( motor_enabled[i] ) {
|
|
mask |= 1U << pgm_read_byte(&_motor_to_channel_map[i]);
|
|
}
|
|
}
|
|
hal.rcout->set_freq( mask, _speed_hz );
|
|
}
|
|
|
|
// set frame orientation (normally + or X)
|
|
void AP_MotorsMatrix::set_frame_orientation( uint8_t new_orientation )
|
|
{
|
|
// return if nothing has changed
|
|
if( new_orientation == _flags.frame_orientation ) {
|
|
return;
|
|
}
|
|
|
|
// call parent
|
|
AP_Motors::set_frame_orientation( new_orientation );
|
|
|
|
// setup the motors
|
|
setup_motors();
|
|
|
|
// enable fast channels or instant pwm
|
|
set_update_rate(_speed_hz);
|
|
}
|
|
|
|
// enable - starts allowing signals to be sent to motors
|
|
void AP_MotorsMatrix::enable()
|
|
{
|
|
int8_t i;
|
|
|
|
// enable output channels
|
|
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
|
if( motor_enabled[i] ) {
|
|
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[i]));
|
|
}
|
|
}
|
|
}
|
|
|
|
// output_min - sends minimum values out to the motors
|
|
void AP_MotorsMatrix::output_min()
|
|
{
|
|
int8_t i;
|
|
|
|
// set limits flags
|
|
limit.roll_pitch = true;
|
|
limit.yaw = true;
|
|
limit.throttle_lower = true;
|
|
limit.throttle_upper = false;
|
|
|
|
// fill the motor_out[] array for HIL use and send minimum value to each motor
|
|
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
|
if( motor_enabled[i] ) {
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[i]), _throttle_radio_min);
|
|
}
|
|
}
|
|
}
|
|
|
|
// get_motor_mask - returns a bitmask of which outputs are being used for motors (1 means being used)
|
|
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
|
|
uint16_t AP_MotorsMatrix::get_motor_mask()
|
|
{
|
|
uint16_t mask = 0;
|
|
for (uint8_t i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
mask |= 1U << i;
|
|
}
|
|
}
|
|
return mask;
|
|
}
|
|
|
|
void AP_MotorsMatrix::output_armed_not_stabilizing()
|
|
{
|
|
int8_t i;
|
|
int16_t throttle_radio_output; // total throttle pwm value, summed onto throttle channel minimum, typically ~1100-1900
|
|
int16_t motor_out[AP_MOTORS_MAX_NUM_MOTORS]; // final outputs sent to the motors
|
|
int16_t out_min_pwm = _throttle_radio_min + _min_throttle; // minimum pwm value we can send to the motors
|
|
int16_t out_max_pwm = _throttle_radio_max; // maximum pwm value we can send to the motors
|
|
|
|
// initialize limits flags
|
|
limit.roll_pitch = true;
|
|
limit.yaw = true;
|
|
limit.throttle_lower = false;
|
|
limit.throttle_upper = false;
|
|
|
|
int16_t thr_in_min = rel_pwm_to_thr_range(_spin_when_armed_ramped);
|
|
if (_throttle_control_input <= thr_in_min) {
|
|
_throttle_control_input = thr_in_min;
|
|
limit.throttle_lower = true;
|
|
}
|
|
|
|
if (_throttle_control_input >= _hover_out) {
|
|
_throttle_control_input = _hover_out;
|
|
limit.throttle_upper = true;
|
|
}
|
|
|
|
throttle_radio_output = calc_throttle_radio_output();
|
|
|
|
// set output throttle
|
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
motor_out[i] = throttle_radio_output;
|
|
}
|
|
}
|
|
|
|
if(throttle_radio_output >= out_min_pwm) {
|
|
// apply thrust curve and voltage scaling
|
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
motor_out[i] = apply_thrust_curve_and_volt_scaling(motor_out[i], out_min_pwm, out_max_pwm);
|
|
}
|
|
}
|
|
}
|
|
|
|
// send output to each motor
|
|
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
|
if( motor_enabled[i] ) {
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[i]), motor_out[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// output_armed - sends commands to the motors
|
|
// includes new scaling stability patch
|
|
// TODO pull code that is common to output_armed_not_stabilizing into helper functions
|
|
void AP_MotorsMatrix::output_armed_stabilizing()
|
|
{
|
|
int8_t i;
|
|
int16_t roll_pwm; // roll pwm value, initially calculated by calc_roll_pwm() but may be modified after, +/- 400
|
|
int16_t pitch_pwm; // pitch pwm value, initially calculated by calc_roll_pwm() but may be modified after, +/- 400
|
|
int16_t yaw_pwm; // yaw pwm value, initially calculated by calc_yaw_pwm() but may be modified after, +/- 400
|
|
int16_t throttle_radio_output; // total throttle pwm value, summed onto throttle channel minimum, typically ~1100-1900
|
|
int16_t out_min_pwm = _throttle_radio_min + _min_throttle; // minimum pwm value we can send to the motors
|
|
int16_t out_max_pwm = _throttle_radio_max; // maximum pwm value we can send to the motors
|
|
int16_t out_mid_pwm = (out_min_pwm+out_max_pwm)/2; // mid pwm value we can send to the motors
|
|
int16_t out_best_thr_pwm; // the is the best throttle we can come up which provides good control without climbing
|
|
float rpy_scale = 1.0; // this is used to scale the roll, pitch and yaw to fit within the motor limits
|
|
|
|
int16_t rpy_out[AP_MOTORS_MAX_NUM_MOTORS]; // buffer so we don't have to multiply coefficients multiple times.
|
|
int16_t motor_out[AP_MOTORS_MAX_NUM_MOTORS]; // final outputs sent to the motors
|
|
|
|
int16_t rpy_low = 0; // lowest motor value
|
|
int16_t rpy_high = 0; // highest motor value
|
|
int16_t yaw_allowed; // amount of yaw we can fit in
|
|
int16_t thr_adj; // the difference between the pilot's desired throttle and out_best_thr_pwm (the throttle that is actually provided)
|
|
|
|
// initialize limits flags
|
|
limit.roll_pitch = false;
|
|
limit.yaw = false;
|
|
limit.throttle_lower = false;
|
|
limit.throttle_upper = false;
|
|
|
|
// Ensure throttle is within bounds of 0 to 1000
|
|
int16_t thr_in_min = rel_pwm_to_thr_range(_min_throttle);
|
|
if (_throttle_control_input <= thr_in_min) {
|
|
_throttle_control_input = thr_in_min;
|
|
limit.throttle_lower = true;
|
|
}
|
|
if (_throttle_control_input >= _max_throttle) {
|
|
_throttle_control_input = _max_throttle;
|
|
limit.throttle_upper = true;
|
|
}
|
|
|
|
roll_pwm = calc_roll_pwm();
|
|
pitch_pwm = calc_pitch_pwm();
|
|
yaw_pwm = calc_yaw_pwm();
|
|
throttle_radio_output = calc_throttle_radio_output();
|
|
|
|
// calculate roll and pitch for each motor
|
|
// set rpy_low and rpy_high to the lowest and highest values of the motors
|
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
rpy_out[i] = roll_pwm * _roll_factor[i] * get_compensation_gain() +
|
|
pitch_pwm * _pitch_factor[i] * get_compensation_gain();
|
|
|
|
// record lowest roll pitch command
|
|
if (rpy_out[i] < rpy_low) {
|
|
rpy_low = rpy_out[i];
|
|
}
|
|
// record highest roll pich command
|
|
if (rpy_out[i] > rpy_high) {
|
|
rpy_high = rpy_out[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
// calculate throttle that gives most possible room for yaw (range 1000 ~ 2000) which is the lower of:
|
|
// 1. mid throttle - average of highest and lowest motor (this would give the maximum possible room margin above the highest motor and below the lowest)
|
|
// 2. the higher of:
|
|
// a) the pilot's throttle input
|
|
// b) the mid point between the pilot's input throttle and hover-throttle
|
|
// Situation #2 ensure we never increase the throttle above hover throttle unless the pilot has commanded this.
|
|
// Situation #2b allows us to raise the throttle above what the pilot commanded but not so far that it would actually cause the copter to rise.
|
|
// We will choose #1 (the best throttle for yaw control) if that means reducing throttle to the motors (i.e. we favour reducing throttle *because* it provides better yaw control)
|
|
// We will choose #2 (a mix of pilot and hover throttle) only when the throttle is quite low. We favour reducing throttle instead of better yaw control because the pilot has commanded it
|
|
int16_t motor_mid = (rpy_low+rpy_high)/2;
|
|
out_best_thr_pwm = min(out_mid_pwm - motor_mid, max(throttle_radio_output, throttle_radio_output*max(0,1.0f-_throttle_thr_mix)+get_hover_throttle_as_pwm()*_throttle_thr_mix));
|
|
|
|
// calculate amount of yaw we can fit into the throttle range
|
|
// this is always equal to or less than the requested yaw from the pilot or rate controller
|
|
yaw_allowed = min(out_max_pwm - out_best_thr_pwm, out_best_thr_pwm - out_min_pwm) - (rpy_high-rpy_low)/2;
|
|
yaw_allowed = max(yaw_allowed, _yaw_headroom);
|
|
|
|
if (yaw_pwm >= 0) {
|
|
// if yawing right
|
|
if (yaw_allowed > yaw_pwm * get_compensation_gain()) {
|
|
yaw_allowed = yaw_pwm * get_compensation_gain(); // to-do: this is bad form for yaw_allows to change meaning to become the amount that we are going to output
|
|
}else{
|
|
limit.yaw = true;
|
|
}
|
|
}else{
|
|
// if yawing left
|
|
yaw_allowed = -yaw_allowed;
|
|
if (yaw_allowed < yaw_pwm * get_compensation_gain()) {
|
|
yaw_allowed = yaw_pwm * get_compensation_gain(); // to-do: this is bad form for yaw_allows to change meaning to become the amount that we are going to output
|
|
}else{
|
|
limit.yaw = true;
|
|
}
|
|
}
|
|
|
|
// add yaw to intermediate numbers for each motor
|
|
rpy_low = 0;
|
|
rpy_high = 0;
|
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
rpy_out[i] = rpy_out[i] +
|
|
yaw_allowed * _yaw_factor[i];
|
|
|
|
// record lowest roll+pitch+yaw command
|
|
if( rpy_out[i] < rpy_low ) {
|
|
rpy_low = rpy_out[i];
|
|
}
|
|
// record highest roll+pitch+yaw command
|
|
if( rpy_out[i] > rpy_high) {
|
|
rpy_high = rpy_out[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
// check everything fits
|
|
thr_adj = throttle_radio_output - out_best_thr_pwm;
|
|
|
|
// calculate upper and lower limits of thr_adj
|
|
int16_t thr_adj_max = max(out_max_pwm-(out_best_thr_pwm+rpy_high),0);
|
|
|
|
// if we are increasing the throttle (situation #2 above)..
|
|
if (thr_adj > 0) {
|
|
// increase throttle as close as possible to requested throttle
|
|
// without going over out_max_pwm
|
|
if (thr_adj > thr_adj_max){
|
|
thr_adj = thr_adj_max;
|
|
// we haven't even been able to apply full throttle command
|
|
limit.throttle_upper = true;
|
|
}
|
|
}else if(thr_adj < 0){
|
|
// decrease throttle as close as possible to requested throttle
|
|
// without going under out_min_pwm or over out_max_pwm
|
|
// earlier code ensures we can't break both boundaries
|
|
int16_t thr_adj_min = min(out_min_pwm-(out_best_thr_pwm+rpy_low),0);
|
|
if (thr_adj > thr_adj_max) {
|
|
thr_adj = thr_adj_max;
|
|
limit.throttle_upper = true;
|
|
}
|
|
if (thr_adj < thr_adj_min) {
|
|
thr_adj = thr_adj_min;
|
|
}
|
|
}
|
|
|
|
// do we need to reduce roll, pitch, yaw command
|
|
// earlier code does not allow both limit's to be passed simultaneously with abs(_yaw_factor)<1
|
|
if ((rpy_low+out_best_thr_pwm)+thr_adj < out_min_pwm){
|
|
// protect against divide by zero
|
|
if (rpy_low != 0) {
|
|
rpy_scale = (float)(out_min_pwm-thr_adj-out_best_thr_pwm)/rpy_low;
|
|
}
|
|
// we haven't even been able to apply full roll, pitch and minimal yaw without scaling
|
|
limit.roll_pitch = true;
|
|
limit.yaw = true;
|
|
}else if((rpy_high+out_best_thr_pwm)+thr_adj > out_max_pwm){
|
|
// protect against divide by zero
|
|
if (rpy_high != 0) {
|
|
rpy_scale = (float)(out_max_pwm-thr_adj-out_best_thr_pwm)/rpy_high;
|
|
}
|
|
// we haven't even been able to apply full roll, pitch and minimal yaw without scaling
|
|
limit.roll_pitch = true;
|
|
limit.yaw = true;
|
|
}
|
|
|
|
// add scaled roll, pitch, constrained yaw and throttle for each motor
|
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
motor_out[i] = out_best_thr_pwm+thr_adj +
|
|
rpy_scale*rpy_out[i];
|
|
}
|
|
}
|
|
|
|
// apply thrust curve and voltage scaling
|
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
motor_out[i] = apply_thrust_curve_and_volt_scaling(motor_out[i], out_min_pwm, out_max_pwm);
|
|
}
|
|
}
|
|
|
|
// clip motor output if required (shouldn't be)
|
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
motor_out[i] = constrain_int16(motor_out[i], out_min_pwm, out_max_pwm);
|
|
}
|
|
}
|
|
|
|
// send output to each motor
|
|
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
|
if( motor_enabled[i] ) {
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[i]), motor_out[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// output_disarmed - sends commands to the motors
|
|
void AP_MotorsMatrix::output_disarmed()
|
|
{
|
|
// Send minimum values to all motors
|
|
output_min();
|
|
}
|
|
|
|
// output_test - spin a motor at the pwm value specified
|
|
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
|
|
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
|
|
void AP_MotorsMatrix::output_test(uint8_t motor_seq, int16_t pwm)
|
|
{
|
|
// exit immediately if not armed
|
|
if (!armed()) {
|
|
return;
|
|
}
|
|
|
|
// loop through all the possible orders spinning any motors that match that description
|
|
for (uint8_t i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i] && _test_order[i] == motor_seq) {
|
|
// turn on this motor
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[i]), pwm);
|
|
}
|
|
}
|
|
}
|
|
|
|
// add_motor
|
|
void AP_MotorsMatrix::add_motor_raw(int8_t motor_num, float roll_fac, float pitch_fac, float yaw_fac, uint8_t testing_order)
|
|
{
|
|
// ensure valid motor number is provided
|
|
if( motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS ) {
|
|
|
|
// increment number of motors if this motor is being newly motor_enabled
|
|
if( !motor_enabled[motor_num] ) {
|
|
motor_enabled[motor_num] = true;
|
|
}
|
|
|
|
// set roll, pitch, thottle factors and opposite motor (for stability patch)
|
|
_roll_factor[motor_num] = roll_fac;
|
|
_pitch_factor[motor_num] = pitch_fac;
|
|
_yaw_factor[motor_num] = yaw_fac;
|
|
|
|
// set order that motor appears in test
|
|
_test_order[motor_num] = testing_order;
|
|
|
|
// disable this channel from being used by RC_Channel_aux
|
|
RC_Channel_aux::disable_aux_channel(_motor_to_channel_map[motor_num]);
|
|
}
|
|
}
|
|
|
|
// add_motor using just position and prop direction - assumes that for each motor, roll and pitch factors are equal
|
|
void AP_MotorsMatrix::add_motor(int8_t motor_num, float angle_degrees, float yaw_factor, uint8_t testing_order)
|
|
{
|
|
add_motor(motor_num, angle_degrees, angle_degrees, yaw_factor, testing_order);
|
|
}
|
|
|
|
// add_motor using position and prop direction. Roll and Pitch factors can differ (for asymmetrical frames)
|
|
void AP_MotorsMatrix::add_motor(int8_t motor_num, float roll_factor_in_degrees, float pitch_factor_in_degrees, float yaw_factor, uint8_t testing_order)
|
|
{
|
|
add_motor_raw(
|
|
motor_num,
|
|
cosf(radians(roll_factor_in_degrees + 90)),
|
|
cosf(radians(pitch_factor_in_degrees)),
|
|
yaw_factor,
|
|
testing_order);
|
|
}
|
|
|
|
// remove_motor - disabled motor and clears all roll, pitch, throttle factors for this motor
|
|
void AP_MotorsMatrix::remove_motor(int8_t motor_num)
|
|
{
|
|
// ensure valid motor number is provided
|
|
if( motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS ) {
|
|
// disable the motor, set all factors to zero
|
|
motor_enabled[motor_num] = false;
|
|
_roll_factor[motor_num] = 0;
|
|
_pitch_factor[motor_num] = 0;
|
|
_yaw_factor[motor_num] = 0;
|
|
}
|
|
}
|
|
|
|
// remove_all_motors - removes all motor definitions
|
|
void AP_MotorsMatrix::remove_all_motors()
|
|
{
|
|
for( int8_t i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
|
|
remove_motor(i);
|
|
}
|
|
}
|