// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
* AP_MotorsMatrix.cpp - ArduCopter motors library
* Code by RandyMackay. DIYDrones.com
*
*/
#include
#include "AP_MotorsMatrix.h"
extern const AP_HAL::HAL& hal;
// Init
void AP_MotorsMatrix::Init()
{
// call parent Init function to set-up throttle curve
AP_Motors::Init();
// setup the motors
setup_motors();
// enable fast channels or instant pwm
set_update_rate(_speed_hz);
}
// set update rate to motors - a value in hertz
void AP_MotorsMatrix::set_update_rate( uint16_t speed_hz )
{
int8_t i;
// record requested speed
_speed_hz = speed_hz;
// check each enabled motor
uint32_t mask = 0;
for( i=0; iset_freq( mask, _speed_hz );
}
// set frame orientation (normally + or X)
void AP_MotorsMatrix::set_frame_orientation( uint8_t new_orientation )
{
// return if nothing has changed
if( new_orientation == _flags.frame_orientation ) {
return;
}
// call parent
AP_Motors::set_frame_orientation( new_orientation );
// setup the motors
setup_motors();
// enable fast channels or instant pwm
set_update_rate(_speed_hz);
}
// enable - starts allowing signals to be sent to motors
void AP_MotorsMatrix::enable()
{
int8_t i;
// enable output channels
for( i=0; ienable_ch(pgm_read_byte(&_motor_to_channel_map[i]));
}
}
}
// output_min - sends minimum values out to the motors
void AP_MotorsMatrix::output_min()
{
int8_t i;
// set limits flags
limit.roll_pitch = true;
limit.yaw = true;
limit.throttle_lower = true;
limit.throttle_upper = false;
// fill the motor_out[] array for HIL use and send minimum value to each motor
for( i=0; iwrite(pgm_read_byte(&_motor_to_channel_map[i]), _throttle_radio_min);
}
}
}
// get_motor_mask - returns a bitmask of which outputs are being used for motors (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
uint16_t AP_MotorsMatrix::get_motor_mask()
{
uint16_t mask = 0;
for (uint8_t i=0; i= _hover_out) {
_throttle_control_input = _hover_out;
limit.throttle_upper = true;
}
throttle_radio_output = calc_throttle_radio_output();
// set output throttle
for (i=0; i= out_min_pwm) {
// apply thrust curve and voltage scaling
for (i=0; iwrite(pgm_read_byte(&_motor_to_channel_map[i]), motor_out[i]);
}
}
}
// output_armed - sends commands to the motors
// includes new scaling stability patch
// TODO pull code that is common to output_armed_not_stabilizing into helper functions
void AP_MotorsMatrix::output_armed_stabilizing()
{
int8_t i;
int16_t roll_pwm; // roll pwm value, initially calculated by calc_roll_pwm() but may be modified after, +/- 400
int16_t pitch_pwm; // pitch pwm value, initially calculated by calc_roll_pwm() but may be modified after, +/- 400
int16_t yaw_pwm; // yaw pwm value, initially calculated by calc_yaw_pwm() but may be modified after, +/- 400
int16_t throttle_radio_output; // total throttle pwm value, summed onto throttle channel minimum, typically ~1100-1900
int16_t out_min_pwm = _throttle_radio_min + _min_throttle; // minimum pwm value we can send to the motors
int16_t out_max_pwm = _throttle_radio_max; // maximum pwm value we can send to the motors
int16_t out_mid_pwm = (out_min_pwm+out_max_pwm)/2; // mid pwm value we can send to the motors
int16_t out_best_thr_pwm; // the is the best throttle we can come up which provides good control without climbing
float rpy_scale = 1.0; // this is used to scale the roll, pitch and yaw to fit within the motor limits
int16_t rpy_out[AP_MOTORS_MAX_NUM_MOTORS]; // buffer so we don't have to multiply coefficients multiple times.
int16_t motor_out[AP_MOTORS_MAX_NUM_MOTORS]; // final outputs sent to the motors
int16_t rpy_low = 0; // lowest motor value
int16_t rpy_high = 0; // highest motor value
int16_t yaw_allowed; // amount of yaw we can fit in
int16_t thr_adj; // the difference between the pilot's desired throttle and out_best_thr_pwm (the throttle that is actually provided)
// initialize limits flags
limit.roll_pitch = false;
limit.yaw = false;
limit.throttle_lower = false;
limit.throttle_upper = false;
// Ensure throttle is within bounds of 0 to 1000
int16_t thr_in_min = rel_pwm_to_thr_range(_min_throttle);
if (_throttle_control_input <= thr_in_min) {
_throttle_control_input = thr_in_min;
limit.throttle_lower = true;
}
if (_throttle_control_input >= _max_throttle) {
_throttle_control_input = _max_throttle;
limit.throttle_upper = true;
}
roll_pwm = calc_roll_pwm();
pitch_pwm = calc_pitch_pwm();
yaw_pwm = calc_yaw_pwm();
throttle_radio_output = calc_throttle_radio_output();
// calculate roll and pitch for each motor
// set rpy_low and rpy_high to the lowest and highest values of the motors
for (i=0; i rpy_high) {
rpy_high = rpy_out[i];
}
}
}
// calculate throttle that gives most possible room for yaw (range 1000 ~ 2000) which is the lower of:
// 1. mid throttle - average of highest and lowest motor (this would give the maximum possible room margin above the highest motor and below the lowest)
// 2. the higher of:
// a) the pilot's throttle input
// b) the mid point between the pilot's input throttle and hover-throttle
// Situation #2 ensure we never increase the throttle above hover throttle unless the pilot has commanded this.
// Situation #2b allows us to raise the throttle above what the pilot commanded but not so far that it would actually cause the copter to rise.
// We will choose #1 (the best throttle for yaw control) if that means reducing throttle to the motors (i.e. we favour reducing throttle *because* it provides better yaw control)
// We will choose #2 (a mix of pilot and hover throttle) only when the throttle is quite low. We favour reducing throttle instead of better yaw control because the pilot has commanded it
int16_t motor_mid = (rpy_low+rpy_high)/2;
out_best_thr_pwm = min(out_mid_pwm - motor_mid, max(throttle_radio_output, throttle_radio_output*max(0,1.0f-_throttle_thr_mix)+get_hover_throttle_as_pwm()*_throttle_thr_mix));
// calculate amount of yaw we can fit into the throttle range
// this is always equal to or less than the requested yaw from the pilot or rate controller
yaw_allowed = min(out_max_pwm - out_best_thr_pwm, out_best_thr_pwm - out_min_pwm) - (rpy_high-rpy_low)/2;
yaw_allowed = max(yaw_allowed, _yaw_headroom);
if (yaw_pwm >= 0) {
// if yawing right
if (yaw_allowed > yaw_pwm * get_compensation_gain()) {
yaw_allowed = yaw_pwm * get_compensation_gain(); // to-do: this is bad form for yaw_allows to change meaning to become the amount that we are going to output
}else{
limit.yaw = true;
}
}else{
// if yawing left
yaw_allowed = -yaw_allowed;
if (yaw_allowed < yaw_pwm * get_compensation_gain()) {
yaw_allowed = yaw_pwm * get_compensation_gain(); // to-do: this is bad form for yaw_allows to change meaning to become the amount that we are going to output
}else{
limit.yaw = true;
}
}
// add yaw to intermediate numbers for each motor
rpy_low = 0;
rpy_high = 0;
for (i=0; i rpy_high) {
rpy_high = rpy_out[i];
}
}
}
// check everything fits
thr_adj = throttle_radio_output - out_best_thr_pwm;
// calculate upper and lower limits of thr_adj
int16_t thr_adj_max = max(out_max_pwm-(out_best_thr_pwm+rpy_high),0);
// if we are increasing the throttle (situation #2 above)..
if (thr_adj > 0) {
// increase throttle as close as possible to requested throttle
// without going over out_max_pwm
if (thr_adj > thr_adj_max){
thr_adj = thr_adj_max;
// we haven't even been able to apply full throttle command
limit.throttle_upper = true;
}
}else if(thr_adj < 0){
// decrease throttle as close as possible to requested throttle
// without going under out_min_pwm or over out_max_pwm
// earlier code ensures we can't break both boundaries
int16_t thr_adj_min = min(out_min_pwm-(out_best_thr_pwm+rpy_low),0);
if (thr_adj > thr_adj_max) {
thr_adj = thr_adj_max;
limit.throttle_upper = true;
}
if (thr_adj < thr_adj_min) {
thr_adj = thr_adj_min;
}
}
// do we need to reduce roll, pitch, yaw command
// earlier code does not allow both limit's to be passed simultaneously with abs(_yaw_factor)<1
if ((rpy_low+out_best_thr_pwm)+thr_adj < out_min_pwm){
// protect against divide by zero
if (rpy_low != 0) {
rpy_scale = (float)(out_min_pwm-thr_adj-out_best_thr_pwm)/rpy_low;
}
// we haven't even been able to apply full roll, pitch and minimal yaw without scaling
limit.roll_pitch = true;
limit.yaw = true;
}else if((rpy_high+out_best_thr_pwm)+thr_adj > out_max_pwm){
// protect against divide by zero
if (rpy_high != 0) {
rpy_scale = (float)(out_max_pwm-thr_adj-out_best_thr_pwm)/rpy_high;
}
// we haven't even been able to apply full roll, pitch and minimal yaw without scaling
limit.roll_pitch = true;
limit.yaw = true;
}
// add scaled roll, pitch, constrained yaw and throttle for each motor
for (i=0; iwrite(pgm_read_byte(&_motor_to_channel_map[i]), motor_out[i]);
}
}
}
// output_disarmed - sends commands to the motors
void AP_MotorsMatrix::output_disarmed()
{
// Send minimum values to all motors
output_min();
}
// output_test - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
void AP_MotorsMatrix::output_test(uint8_t motor_seq, int16_t pwm)
{
// exit immediately if not armed
if (!armed()) {
return;
}
// loop through all the possible orders spinning any motors that match that description
for (uint8_t i=0; iwrite(pgm_read_byte(&_motor_to_channel_map[i]), pwm);
}
}
}
// add_motor
void AP_MotorsMatrix::add_motor_raw(int8_t motor_num, float roll_fac, float pitch_fac, float yaw_fac, uint8_t testing_order)
{
// ensure valid motor number is provided
if( motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS ) {
// increment number of motors if this motor is being newly motor_enabled
if( !motor_enabled[motor_num] ) {
motor_enabled[motor_num] = true;
}
// set roll, pitch, thottle factors and opposite motor (for stability patch)
_roll_factor[motor_num] = roll_fac;
_pitch_factor[motor_num] = pitch_fac;
_yaw_factor[motor_num] = yaw_fac;
// set order that motor appears in test
_test_order[motor_num] = testing_order;
// disable this channel from being used by RC_Channel_aux
RC_Channel_aux::disable_aux_channel(_motor_to_channel_map[motor_num]);
}
}
// add_motor using just position and prop direction - assumes that for each motor, roll and pitch factors are equal
void AP_MotorsMatrix::add_motor(int8_t motor_num, float angle_degrees, float yaw_factor, uint8_t testing_order)
{
add_motor(motor_num, angle_degrees, angle_degrees, yaw_factor, testing_order);
}
// add_motor using position and prop direction. Roll and Pitch factors can differ (for asymmetrical frames)
void AP_MotorsMatrix::add_motor(int8_t motor_num, float roll_factor_in_degrees, float pitch_factor_in_degrees, float yaw_factor, uint8_t testing_order)
{
add_motor_raw(
motor_num,
cosf(radians(roll_factor_in_degrees + 90)),
cosf(radians(pitch_factor_in_degrees)),
yaw_factor,
testing_order);
}
// remove_motor - disabled motor and clears all roll, pitch, throttle factors for this motor
void AP_MotorsMatrix::remove_motor(int8_t motor_num)
{
// ensure valid motor number is provided
if( motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS ) {
// disable the motor, set all factors to zero
motor_enabled[motor_num] = false;
_roll_factor[motor_num] = 0;
_pitch_factor[motor_num] = 0;
_yaw_factor[motor_num] = 0;
}
}
// remove_all_motors - removes all motor definitions
void AP_MotorsMatrix::remove_all_motors()
{
for( int8_t i=0; i