mirror of https://github.com/ArduPilot/ardupilot
177 lines
6.8 KiB
C++
177 lines
6.8 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include "AP_RangeFinder_Benewake.h"
|
|
#include <AP_SerialManager/AP_SerialManager.h>
|
|
#include <ctype.h>
|
|
#include <AP_HAL/utility/sparse-endian.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
#define BENEWAKE_FRAME_HEADER 0x59
|
|
#define BENEWAKE_FRAME_LENGTH 9
|
|
#define BENEWAKE_DIST_MAX_CM 32768
|
|
#define BENEWAKE_TFMINI_OUT_OF_RANGE_CM 1200
|
|
#define BENEWAKE_TF02_OUT_OF_RANGE_CM 2200
|
|
#define BENEWAKE_OUT_OF_RANGE_ADD_CM 100
|
|
|
|
// format of serial packets received from benewake lidar
|
|
//
|
|
// Data Bit Definition Description
|
|
// ------------------------------------------------
|
|
// byte 0 Frame header 0x59
|
|
// byte 1 Frame header 0x59
|
|
// byte 2 DIST_L Distance (in cm) low 8 bits
|
|
// byte 3 DIST_H Distance (in cm) high 8 bits
|
|
// byte 4 STRENGTH_L Strength low 8 bits
|
|
// byte 5 STRENGTH_H Strength high 8 bits
|
|
// byte 6 (TF02) SIG Reliability in 8 levels, 7 & 8 means reliable
|
|
// byte 6 (TFmini) Distance Mode 0x02 for short distance (mm), 0x07 for long distance (cm)
|
|
// byte 7 (TF02 only) TIME Exposure time in two levels 0x03 and 0x06
|
|
// byte 8 Checksum Checksum byte, sum of bytes 0 to bytes 7
|
|
|
|
/*
|
|
The constructor also initialises the rangefinder. Note that this
|
|
constructor is not called until detect() returns true, so we
|
|
already know that we should setup the rangefinder
|
|
*/
|
|
AP_RangeFinder_Benewake::AP_RangeFinder_Benewake(RangeFinder::RangeFinder_State &_state,
|
|
AP_RangeFinder_Params &_params,
|
|
AP_SerialManager &serial_manager,
|
|
uint8_t serial_instance,
|
|
benewake_model_type model) :
|
|
AP_RangeFinder_Backend(_state, _params),
|
|
model_type(model)
|
|
{
|
|
uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Rangefinder, serial_instance);
|
|
if (uart != nullptr) {
|
|
uart->begin(serial_manager.find_baudrate(AP_SerialManager::SerialProtocol_Rangefinder, serial_instance));
|
|
}
|
|
}
|
|
|
|
/*
|
|
detect if a Benewake rangefinder is connected. We'll detect by
|
|
trying to take a reading on Serial. If we get a result the sensor is
|
|
there.
|
|
*/
|
|
bool AP_RangeFinder_Benewake::detect(AP_SerialManager &serial_manager, uint8_t serial_instance)
|
|
{
|
|
return serial_manager.find_serial(AP_SerialManager::SerialProtocol_Rangefinder, serial_instance) != nullptr;
|
|
}
|
|
|
|
// distance returned in reading_cm, signal_ok is set to true if sensor reports a strong signal
|
|
bool AP_RangeFinder_Benewake::get_reading(uint16_t &reading_cm)
|
|
{
|
|
if (uart == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
float sum_cm = 0;
|
|
uint16_t count = 0;
|
|
uint16_t count_out_of_range = 0;
|
|
|
|
// read any available lines from the lidar
|
|
int16_t nbytes = uart->available();
|
|
while (nbytes-- > 0) {
|
|
int16_t r = uart->read();
|
|
if (r < 0) {
|
|
continue;
|
|
}
|
|
uint8_t c = (uint8_t)r;
|
|
// if buffer is empty and this byte is 0x59, add to buffer
|
|
if (linebuf_len == 0) {
|
|
if (c == BENEWAKE_FRAME_HEADER) {
|
|
linebuf[linebuf_len++] = c;
|
|
}
|
|
} else if (linebuf_len == 1) {
|
|
// if buffer has 1 element and this byte is 0x59, add it to buffer
|
|
// if not clear the buffer
|
|
if (c == BENEWAKE_FRAME_HEADER) {
|
|
linebuf[linebuf_len++] = c;
|
|
} else {
|
|
linebuf_len = 0;
|
|
}
|
|
} else {
|
|
// add character to buffer
|
|
linebuf[linebuf_len++] = c;
|
|
// if buffer now has 9 items try to decode it
|
|
if (linebuf_len == BENEWAKE_FRAME_LENGTH) {
|
|
// calculate checksum
|
|
uint8_t checksum = 0;
|
|
for (uint8_t i=0; i<BENEWAKE_FRAME_LENGTH-1; i++) {
|
|
checksum += linebuf[i];
|
|
}
|
|
// if checksum matches extract contents
|
|
if (checksum == linebuf[BENEWAKE_FRAME_LENGTH-1]) {
|
|
// calculate distance
|
|
uint16_t dist = ((uint16_t)linebuf[3] << 8) | linebuf[2];
|
|
if (dist >= BENEWAKE_DIST_MAX_CM) {
|
|
// this reading is out of range
|
|
count_out_of_range++;
|
|
} else if (model_type == BENEWAKE_TFmini) {
|
|
// no signal byte from TFmini so add distance to sum
|
|
sum_cm += dist;
|
|
count++;
|
|
} else {
|
|
// TF02 provides signal reliability (good = 7 or 8)
|
|
if (linebuf[6] >= 7) {
|
|
// add distance to sum
|
|
sum_cm += dist;
|
|
count++;
|
|
} else {
|
|
// this reading is out of range
|
|
count_out_of_range++;
|
|
}
|
|
}
|
|
}
|
|
// clear buffer
|
|
linebuf_len = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (count > 0) {
|
|
// return average distance of readings
|
|
reading_cm = sum_cm / count;
|
|
return true;
|
|
}
|
|
|
|
if (count_out_of_range > 0) {
|
|
// if only out of range readings return larger of
|
|
// driver defined maximum range for the model and user defined max range + 1m
|
|
float model_dist_max_cm = (model_type == BENEWAKE_TFmini) ? BENEWAKE_TFMINI_OUT_OF_RANGE_CM : BENEWAKE_TF02_OUT_OF_RANGE_CM;
|
|
reading_cm = MAX(model_dist_max_cm, max_distance_cm() + BENEWAKE_OUT_OF_RANGE_ADD_CM);
|
|
return true;
|
|
}
|
|
|
|
// no readings so return false
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
update the state of the sensor
|
|
*/
|
|
void AP_RangeFinder_Benewake::update(void)
|
|
{
|
|
if (get_reading(state.distance_cm)) {
|
|
// update range_valid state based on distance measured
|
|
state.last_reading_ms = AP_HAL::millis();
|
|
update_status();
|
|
} else if (AP_HAL::millis() - state.last_reading_ms > 200) {
|
|
set_status(RangeFinder::RangeFinder_NoData);
|
|
}
|
|
}
|