ardupilot/libraries/AP_OpticalFlow/AP_OpticalFlow_PX4.cpp

91 lines
3.2 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_OpticalFlow_PX4.cpp - ardupilot library for PX4Flow sensor
*
*/
#include <AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
#include "AP_OpticalFlow_PX4.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <drivers/drv_px4flow.h>
#include <uORB/topics/optical_flow.h>
extern const AP_HAL::HAL& hal;
// Public Methods //////////////////////////////////////////////////////////////
void AP_OpticalFlow_PX4::init(void)
{
_fd = open(PX4FLOW_DEVICE_PATH, O_RDONLY);
// check for failure to open device
if (_fd < 0) {
hal.console->printf("Unable to open " PX4FLOW_DEVICE_PATH "\n");
return;
}
// change to 10Hz update
if (ioctl(_fd, SENSORIOCSPOLLRATE, 10) != 0) {
hal.console->printf("Unable to set flow rate to 10Hz\n");
}
// if we got this far, the sensor must be healthy
_flags.healthy = true;
}
// update - read latest values from sensor and fill in x,y and totals.
void AP_OpticalFlow_PX4::update(void)
{
// return immediately if not healthy
if (!_flags.healthy) {
return;
}
struct optical_flow_s report;
while (::read(_fd, &report, sizeof(optical_flow_s)) == sizeof(optical_flow_s) && report.timestamp != _last_timestamp) {
_device_id = report.sensor_id;
_surface_quality = report.quality;
if (report.integration_timespan > 0) {
float flowScaleFactorX = 1.0f + 0.001f * float(_flowScalerX);
float flowScaleFactorY = 1.0f + 0.001f * float(_flowScalerY);
float integralToRate = 1e6f / float(report.integration_timespan);
_flowRate.x = flowScaleFactorX * integralToRate * float(report.pixel_flow_x_integral); // rad/sec measured optically about the X sensor axis
_flowRate.y = flowScaleFactorY * integralToRate * float(report.pixel_flow_y_integral); // rad/sec measured optically about the Y sensor axis
_bodyRate.x = integralToRate * float(report.gyro_x_rate_integral); // rad/sec measured inertially about the X sensor axis
_bodyRate.y = integralToRate * float(report.gyro_y_rate_integral); // rad/sec measured inertially about the Y sensor axis
} else {
_flowRate.x = 0.0f;
_flowRate.y = 0.0f;
_bodyRate.x = 0.0f;
_bodyRate.y = 0.0f;
}
_last_timestamp = report.timestamp;
_last_update = hal.scheduler->millis();
}
}
#endif // CONFIG_HAL_BOARD == HAL_BOARD_PX4