ardupilot/libraries/AP_HAL_ChibiOS/Util.cpp
2019-05-15 15:33:48 +10:00

320 lines
8.1 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Code by Andrew Tridgell and Siddharth Bharat Purohit
*/
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include "Util.h"
#include <ch.h>
#include "RCOutput.h"
#include "hwdef/common/stm32_util.h"
#include "hwdef/common/watchdog.h"
#include "hwdef/common/flash.h"
#include <AP_ROMFS/AP_ROMFS.h>
#include "sdcard.h"
#if HAL_WITH_IO_MCU
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <AP_IOMCU/AP_IOMCU.h>
extern AP_IOMCU iomcu;
#endif
extern const AP_HAL::HAL& hal;
using namespace ChibiOS;
#if CH_CFG_USE_HEAP == TRUE
/**
how much free memory do we have in bytes.
*/
uint32_t Util::available_memory(void)
{
// from malloc.c in hwdef
return mem_available();
}
/*
Special Allocation Routines
*/
void* Util::malloc_type(size_t size, AP_HAL::Util::Memory_Type mem_type)
{
if (mem_type == AP_HAL::Util::MEM_DMA_SAFE) {
return malloc_dma(size);
} else if (mem_type == AP_HAL::Util::MEM_FAST) {
return malloc_fastmem(size);
} else {
return calloc(1, size);
}
}
void Util::free_type(void *ptr, size_t size, AP_HAL::Util::Memory_Type mem_type)
{
if (ptr != NULL) {
chHeapFree(ptr);
}
}
#ifdef ENABLE_HEAP
void *Util::allocate_heap_memory(size_t size)
{
void *buf = malloc(size);
if (buf == nullptr) {
return nullptr;
}
memory_heap_t *heap = (memory_heap_t *)malloc(sizeof(memory_heap_t));
if (heap != nullptr) {
chHeapObjectInit(heap, buf, size);
}
return heap;
}
void *Util::heap_realloc(void *heap, void *ptr, size_t new_size)
{
if (heap == nullptr) {
return nullptr;
}
if (new_size == 0) {
if (ptr != nullptr) {
chHeapFree(ptr);
}
return nullptr;
}
if (ptr == nullptr) {
return chHeapAlloc((memory_heap_t *)heap, new_size);
}
void *new_mem = chHeapAlloc((memory_heap_t *)heap, new_size);
if (new_mem != nullptr) {
memcpy(new_mem, ptr, chHeapGetSize(ptr) > new_size ? new_size : chHeapGetSize(ptr));
chHeapFree(ptr);
}
return new_mem;
}
#endif // ENABLE_HEAP
#endif // CH_CFG_USE_HEAP
/*
get safety switch state
*/
Util::safety_state Util::safety_switch_state(void)
{
#if HAL_USE_PWM == TRUE
return ((RCOutput *)hal.rcout)->_safety_switch_state();
#else
return SAFETY_NONE;
#endif
}
void Util::set_imu_temp(float current)
{
#if HAL_HAVE_IMU_HEATER
if (!heater.target || *heater.target == -1) {
return;
}
// average over temperatures to remove noise
heater.count++;
heater.sum += current;
// update once a second
uint32_t now = AP_HAL::millis();
if (now - heater.last_update_ms < 1000) {
#if defined(HAL_HEATER_GPIO_PIN)
// output as duty cycle to local pin
hal.gpio->write(HAL_HEATER_GPIO_PIN, heater.duty_counter < heater.output);
heater.duty_counter = (heater.duty_counter+1) % 100;
#endif
return;
}
heater.last_update_ms = now;
current = heater.sum / heater.count;
heater.sum = 0;
heater.count = 0;
// experimentally tweaked for Pixhawk2
const float kI = 0.3f;
const float kP = 200.0f;
float target = (float)(*heater.target);
// limit to 65 degrees to prevent damage
target = constrain_float(target, 0, 65);
float err = target - current;
heater.integrator += kI * err;
heater.integrator = constrain_float(heater.integrator, 0, 70);
heater.output = constrain_float(kP * err + heater.integrator, 0, 100);
//hal.console->printf("integrator %.1f out=%.1f temp=%.2f err=%.2f\n", heater.integrator, heater.output, current, err);
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled()) {
// tell IOMCU to setup heater
iomcu.set_heater_duty_cycle(heater.output);
}
#endif
#endif // HAL_HAVE_IMU_HEATER
}
void Util::set_imu_target_temp(int8_t *target)
{
#if HAL_HAVE_IMU_HEATER
heater.target = target;
#endif
}
#ifdef HAL_PWM_ALARM
struct Util::ToneAlarmPwmGroup Util::_toneAlarm_pwm_group = HAL_PWM_ALARM;
bool Util::toneAlarm_init()
{
_toneAlarm_pwm_group.pwm_cfg.period = 1000;
pwmStart(_toneAlarm_pwm_group.pwm_drv, &_toneAlarm_pwm_group.pwm_cfg);
return true;
}
void Util::toneAlarm_set_buzzer_tone(float frequency, float volume, uint32_t duration_ms)
{
if (is_zero(frequency) || is_zero(volume)) {
pwmDisableChannel(_toneAlarm_pwm_group.pwm_drv, _toneAlarm_pwm_group.chan);
} else {
pwmChangePeriod(_toneAlarm_pwm_group.pwm_drv,
roundf(_toneAlarm_pwm_group.pwm_cfg.frequency/frequency));
pwmEnableChannel(_toneAlarm_pwm_group.pwm_drv, _toneAlarm_pwm_group.chan, roundf(volume*_toneAlarm_pwm_group.pwm_cfg.frequency/frequency)/2);
}
}
#endif // HAL_PWM_ALARM
/*
set HW RTC in UTC microseconds
*/
void Util::set_hw_rtc(uint64_t time_utc_usec)
{
stm32_set_utc_usec(time_utc_usec);
}
/*
get system clock in UTC microseconds
*/
uint64_t Util::get_hw_rtc() const
{
return stm32_get_utc_usec();
}
#ifndef HAL_NO_FLASH_SUPPORT
bool Util::flash_bootloader()
{
uint32_t fw_size;
const char *fw_name = "bootloader.bin";
EXPECT_DELAY_MS(11000);
uint8_t *fw = AP_ROMFS::find_decompress(fw_name, fw_size);
if (!fw) {
hal.console->printf("failed to find %s\n", fw_name);
return false;
}
const uint32_t addr = hal.flash->getpageaddr(0);
if (!memcmp(fw, (const void*)addr, fw_size)) {
hal.console->printf("Bootloader up-to-date\n");
free(fw);
return true;
}
hal.console->printf("Erasing\n");
if (!hal.flash->erasepage(0)) {
hal.console->printf("Erase failed\n");
free(fw);
return false;
}
hal.console->printf("Flashing %s @%08x\n", fw_name, (unsigned int)addr);
const uint8_t max_attempts = 10;
for (uint8_t i=0; i<max_attempts; i++) {
bool ok = hal.flash->write(addr, fw, fw_size);
if (!ok) {
hal.console->printf("Flash failed! (attempt=%u/%u)\n",
i+1,
max_attempts);
hal.scheduler->delay(1000);
continue;
}
hal.console->printf("Flash OK\n");
free(fw);
return true;
}
hal.console->printf("Flash failed after %u attempts\n", max_attempts);
free(fw);
return false;
}
#endif //#ifndef HAL_NO_FLASH_SUPPORT
/*
display system identifer - board type and serial number
*/
bool Util::get_system_id(char buf[40])
{
uint8_t serialid[12];
char board_name[14];
memcpy(serialid, (const void *)UDID_START, 12);
strncpy(board_name, CHIBIOS_SHORT_BOARD_NAME, 13);
board_name[13] = 0;
// this format is chosen to match the format used by HAL_PX4
snprintf(buf, 40, "%s %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X",
board_name,
(unsigned)serialid[3], (unsigned)serialid[2], (unsigned)serialid[1], (unsigned)serialid[0],
(unsigned)serialid[7], (unsigned)serialid[6], (unsigned)serialid[5], (unsigned)serialid[4],
(unsigned)serialid[11], (unsigned)serialid[10], (unsigned)serialid[9],(unsigned)serialid[8]);
buf[39] = 0;
return true;
}
bool Util::get_system_id_unformatted(uint8_t buf[], uint8_t &len)
{
len = MIN(12, len);
memcpy(buf, (const void *)UDID_START, len);
return true;
}
#ifdef USE_POSIX
/*
initialise filesystem
*/
bool Util::fs_init(void)
{
return sdcard_retry();
}
#endif
// return true if the reason for the reboot was a watchdog reset
bool Util::was_watchdog_reset() const
{
return stm32_was_watchdog_reset();
}