mirror of https://github.com/ArduPilot/ardupilot
172 lines
5.1 KiB
C++
172 lines
5.1 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
/*
|
|
* auto_calibration.cpp - airspeed auto calibration
|
|
|
|
* Algorithm by Paul Riseborough
|
|
*
|
|
*/
|
|
|
|
#include <AP_HAL.h>
|
|
#include <AP_Math.h>
|
|
#include <AP_Common.h>
|
|
#include <AP_Airspeed.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
// constructor - fill in all the initial values
|
|
Airspeed_Calibration::Airspeed_Calibration(const AP_Vehicle::FixedWing &parms) :
|
|
P(100, 0, 0,
|
|
0, 100, 0,
|
|
0, 0, 0.000001f),
|
|
Q0(0.01f),
|
|
Q1(0.0000005f),
|
|
state(0, 0, 0),
|
|
DT(1),
|
|
aparm(parms)
|
|
{
|
|
}
|
|
|
|
/*
|
|
initialise the ratio
|
|
*/
|
|
void Airspeed_Calibration::init(float initial_ratio)
|
|
{
|
|
state.z = 1.0 / sqrtf(initial_ratio);
|
|
}
|
|
|
|
/*
|
|
update the state of the airspeed calibration - needs to be called
|
|
once a second
|
|
|
|
On an AVR2560 this costs 1.9 milliseconds per call
|
|
*/
|
|
float Airspeed_Calibration::update(float airspeed, const Vector3f &vg)
|
|
{
|
|
// Perform the covariance prediction
|
|
// Q is a diagonal matrix so only need to add three terms in
|
|
// C code implementation
|
|
// P = P + Q;
|
|
P.a.x += Q0;
|
|
P.b.y += Q0;
|
|
P.c.z += Q1;
|
|
|
|
// Perform the predicted measurement using the current state estimates
|
|
// No state prediction required because states are assumed to be time
|
|
// invariant plus process noise
|
|
// Ignore vertical wind component
|
|
float TAS_pred = state.z * sqrtf(sq(vg.x - state.x) + sq(vg.y - state.y) + sq(vg.z));
|
|
float TAS_mea = airspeed;
|
|
|
|
// Calculate the observation Jacobian H_TAS
|
|
float SH1 = sq(vg.y - state.y) + sq(vg.x - state.x);
|
|
if (SH1 < 0.000001f) {
|
|
// avoid division by a small number
|
|
return state.z;
|
|
}
|
|
float SH2 = 1/sqrt(SH1);
|
|
|
|
// observation Jacobian
|
|
Vector3f H_TAS(
|
|
-(state.z*SH2*(2*vg.x - 2*state.x))/2,
|
|
-(state.z*SH2*(2*vg.y - 2*state.y))/2,
|
|
1/SH2);
|
|
|
|
// Calculate the fusion innovaton covariance assuming a TAS measurement
|
|
// noise of 1.0 m/s
|
|
// S = H_TAS*P*H_TAS' + 1.0; % [1 x 3] * [3 x 3] * [3 x 1] + [1 x 1]
|
|
Vector3f PH = P * H_TAS;
|
|
float S = H_TAS * PH + 1.0f;
|
|
|
|
// Calculate the Kalman gain
|
|
// [3 x 3] * [3 x 1] / [1 x 1]
|
|
Vector3f KG = PH / S;
|
|
|
|
// Update the states
|
|
state += KG*(TAS_mea - TAS_pred); // [3 x 1] + [3 x 1] * [1 x 1]
|
|
|
|
// Update the covariance matrix
|
|
Vector3f HP2 = H_TAS * P;
|
|
P -= KG.mul_rowcol(HP2);
|
|
|
|
// force symmetry on the covariance matrix - necessary due to rounding
|
|
// errors
|
|
float P12 = 0.5f * (P.a.y + P.b.x);
|
|
float P13 = 0.5f * (P.a.z + P.c.x);
|
|
float P23 = 0.5f * (P.b.z + P.c.y);
|
|
P.a.y = P.b.x = P12;
|
|
P.a.z = P.c.x = P13;
|
|
P.b.z = P.c.y = P23;
|
|
|
|
// Constrain diagonals to be non-negative - protects against rounding errors
|
|
P.a.x = max(P.a.x, 0.0f);
|
|
P.b.y = max(P.b.y, 0.0f);
|
|
P.c.z = max(P.c.z, 0.0f);
|
|
|
|
state.x = constrain_float(state.x, -aparm.airspeed_max, aparm.airspeed_max);
|
|
state.y = constrain_float(state.y, -aparm.airspeed_max, aparm.airspeed_max);
|
|
state.z = constrain_float(state.z, 0.5f, 1.0f);
|
|
|
|
return state.z;
|
|
}
|
|
|
|
|
|
/*
|
|
called once a second to do calibration update
|
|
*/
|
|
void AP_Airspeed::update_calibration(const Vector3f &vground)
|
|
{
|
|
if (!_autocal) {
|
|
// auto-calibration not enabled
|
|
return;
|
|
}
|
|
|
|
// set state.z based on current ratio, this allows the operator to
|
|
// override the current ratio in flight with autocal, which is
|
|
// very useful both for testing and to force a reasonable value.
|
|
float ratio = constrain_float(_ratio, 1.0f, 4.0f);
|
|
|
|
_calibration.state.z = 1.0 / sqrtf(ratio);
|
|
|
|
// calculate true airspeed, assuming a airspeed ratio of 1.0
|
|
float dpress = get_differential_pressure();
|
|
float true_airspeed = sqrtf(dpress) * _EAS2TAS;
|
|
|
|
float zratio = _calibration.update(true_airspeed, vground);
|
|
|
|
if (isnan(zratio) || isinf(zratio)) {
|
|
return;
|
|
}
|
|
|
|
// this constrains the resulting ratio to between 1.0 and 4.0
|
|
zratio = constrain_float(zratio, 0.5f, 1.0f);
|
|
_ratio.set(1/sq(zratio));
|
|
if (_counter > 60) {
|
|
if (_last_saved_ratio > 1.05f*_ratio ||
|
|
_last_saved_ratio < 0.95f*_ratio) {
|
|
_ratio.save();
|
|
_last_saved_ratio = _ratio;
|
|
_counter = 0;
|
|
}
|
|
} else {
|
|
_counter++;
|
|
}
|
|
}
|
|
|
|
// log airspeed calibration data to MAVLink
|
|
void AP_Airspeed::log_mavlink_send(mavlink_channel_t chan, const Vector3f &vground)
|
|
{
|
|
mavlink_msg_airspeed_autocal_send(chan,
|
|
vground.x,
|
|
vground.y,
|
|
vground.z,
|
|
get_differential_pressure(),
|
|
_EAS2TAS,
|
|
_ratio.get(),
|
|
_calibration.state.x,
|
|
_calibration.state.y,
|
|
_calibration.state.z,
|
|
_calibration.P.a.x,
|
|
_calibration.P.b.y,
|
|
_calibration.P.c.z);
|
|
}
|