mirror of https://github.com/ArduPilot/ardupilot
481 lines
26 KiB
C++
481 lines
26 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
/*
|
|
22 state EKF based on https://github.com/priseborough/InertialNav
|
|
|
|
Converted from Matlab to C++ by Paul Riseborough
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef AP_NavEKF
|
|
#define AP_NavEKF
|
|
|
|
#include <AP_Math.h>
|
|
#include <AP_InertialSensor.h>
|
|
#include <AP_Baro.h>
|
|
#include <AP_Airspeed.h>
|
|
#include <AP_Compass.h>
|
|
#include <AP_Param.h>
|
|
|
|
// #define MATH_CHECK_INDEXES 1
|
|
|
|
#include <vectorN.h>
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
|
|
#include <systemlib/perf_counter.h>
|
|
#endif
|
|
|
|
|
|
class AP_AHRS;
|
|
|
|
class NavEKF
|
|
{
|
|
public:
|
|
typedef float ftype;
|
|
#if MATH_CHECK_INDEXES
|
|
typedef VectorN<ftype,2> Vector2;
|
|
typedef VectorN<ftype,3> Vector3;
|
|
typedef VectorN<ftype,6> Vector6;
|
|
typedef VectorN<ftype,8> Vector8;
|
|
typedef VectorN<ftype,11> Vector11;
|
|
typedef VectorN<ftype,13> Vector13;
|
|
typedef VectorN<ftype,14> Vector14;
|
|
typedef VectorN<ftype,15> Vector15;
|
|
typedef VectorN<ftype,22> Vector22;
|
|
typedef VectorN<VectorN<ftype,3>,3> Matrix3;
|
|
typedef VectorN<VectorN<ftype,22>,22> Matrix22;
|
|
typedef VectorN<VectorN<ftype,50>,22> Matrix22_50;
|
|
#else
|
|
typedef ftype Vector2[2];
|
|
typedef ftype Vector3[3];
|
|
typedef ftype Vector6[6];
|
|
typedef ftype Vector8[8];
|
|
typedef ftype Vector11[11];
|
|
typedef ftype Vector13[13];
|
|
typedef ftype Vector14[14];
|
|
typedef ftype Vector15[15];
|
|
typedef ftype Vector22[22];
|
|
typedef ftype Vector31[31];
|
|
typedef ftype Matrix3[3][3];
|
|
typedef ftype Matrix22[22][22];
|
|
typedef ftype Matrix31_50[31][50];
|
|
#endif
|
|
|
|
// Constructor
|
|
NavEKF(const AP_AHRS *ahrs, AP_Baro &baro);
|
|
|
|
// This function is used to initialise the filter whilst moving, using the AHRS DCM solution
|
|
// It should NOT be used to re-initialise after a timeout as DCM will also be corrupted
|
|
void InitialiseFilterDynamic(void);
|
|
|
|
// Initialise the states from accelerometer and magnetometer data (if present)
|
|
// This method can only be used when the vehicle is static
|
|
void InitialiseFilterBootstrap(void);
|
|
|
|
// Update Filter States - this should be called whenever new IMU data is available
|
|
void UpdateFilter(void);
|
|
|
|
// Check basic filter health metrics and return a consolidated health status
|
|
bool healthy(void) const;
|
|
|
|
// return true if filter is dead-reckoning height
|
|
bool HeightDrifting(void) const;
|
|
|
|
// return true if filter is dead-reckoning position
|
|
bool PositionDrifting(void) const;
|
|
|
|
// return the last calculated NED position relative to the reference point (m).
|
|
// return false if no position is available
|
|
bool getPosNED(Vector3f &pos) const;
|
|
|
|
// return NED velocity in m/s
|
|
void getVelNED(Vector3f &vel) const;
|
|
|
|
// return body axis gyro bias estimates in rad/sec
|
|
void getGyroBias(Vector3f &gyroBias) const;
|
|
|
|
// return weighting of first IMU in blending function and the individual Z-accel bias estimates in m/s^2
|
|
void getAccelBias(Vector3f &accelBias) const;
|
|
|
|
// return the NED wind speed estimates in m/s (positive is air moving in the direction of the axis)
|
|
void getWind(Vector3f &wind) const;
|
|
|
|
// return earth magnetic field estimates in measurement units / 1000
|
|
void getMagNED(Vector3f &magNED) const;
|
|
|
|
// return body magnetic field estimates in measurement units / 1000
|
|
void getMagXYZ(Vector3f &magXYZ) const;
|
|
|
|
// return the last calculated latitude, longitude and height
|
|
bool getLLH(struct Location &loc) const;
|
|
|
|
// return the Euler roll, pitch and yaw angle in radians
|
|
void getEulerAngles(Vector3f &eulers) const;
|
|
|
|
// return the transformation matrix from XYZ (body) to NED axes
|
|
void getRotationBodyToNED(Matrix3f &mat) const;
|
|
|
|
// return the quaternions defining the rotation from NED to XYZ (body) axes
|
|
void getQuaternion(Quaternion &quat) const;
|
|
|
|
// return the innovations for the NED Pos, NED Vel, XYZ Mag and Vtas measurements
|
|
void getInnovations(Vector3f &velInnov, Vector3f &posInnov, Vector3f &magInnov, float &tasInnov) const;
|
|
|
|
// return the innovation consistency test ratios for the velocity, position, magnetometer and true airspeed measurements
|
|
void getVariances(float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar, Vector2f &offset) const;
|
|
|
|
static const struct AP_Param::GroupInfo var_info[];
|
|
|
|
private:
|
|
const AP_AHRS *_ahrs;
|
|
AP_Baro &_baro;
|
|
|
|
// the states are available in two forms, either as a Vector27, or
|
|
// broken down as individual elements. Both are equivalent (same
|
|
// memory)
|
|
Vector31 states;
|
|
struct state_elements {
|
|
Quaternion quat; // 0..3
|
|
Vector3f velocity; // 4..6
|
|
Vector3f position; // 7..9
|
|
Vector3f gyro_bias; // 10..12
|
|
float accel_zbias1; // 13
|
|
Vector2f wind_vel; // 14..15
|
|
Vector3f earth_magfield; // 16..18
|
|
Vector3f body_magfield; // 19..21
|
|
float accel_zbias2; // 22
|
|
Vector3f vel1; // 23 .. 25
|
|
float posD1; // 26
|
|
Vector3f vel2; // 27 .. 29
|
|
float posD2; // 30
|
|
} &state;
|
|
|
|
// update the quaternion, velocity and position states using IMU measurements
|
|
void UpdateStrapdownEquationsNED();
|
|
|
|
// calculate the predicted state covariance matrix
|
|
void CovariancePrediction();
|
|
|
|
// force symmetry on the state covariance matrix
|
|
void ForceSymmetry();
|
|
|
|
// copy covariances across from covariance prediction calculation and fix numerical errors
|
|
void CopyAndFixCovariances();
|
|
|
|
// constrain variances (diagonal terms) in the state covariance matrix
|
|
void ConstrainVariances();
|
|
|
|
// constrain states
|
|
void ConstrainStates();
|
|
|
|
// fuse selected position, velocity and height measurements
|
|
void FuseVelPosNED();
|
|
|
|
// fuse magnetometer measurements
|
|
void FuseMagnetometer();
|
|
|
|
// fuse true airspeed measurements
|
|
void FuseAirspeed();
|
|
|
|
// fuse sythetic sideslip measurement of zero
|
|
void FuseSideslip();
|
|
|
|
// zero specified range of rows in the state covariance matrix
|
|
void zeroRows(Matrix22 &covMat, uint8_t first, uint8_t last);
|
|
|
|
// zero specified range of columns in the state covariance matrix
|
|
void zeroCols(Matrix22 &covMat, uint8_t first, uint8_t last);
|
|
|
|
// store states along with system time stamp in msces
|
|
void StoreStates(void);
|
|
|
|
// Reset the stored state history and store the current state
|
|
void StoreStatesReset(void);
|
|
|
|
// recall state vector stored at closest time to the one specified by msec
|
|
void RecallStates(state_elements &statesForFusion, uint32_t msec);
|
|
|
|
// calculate nav to body quaternions from body to nav rotation matrix
|
|
void quat2Tbn(Matrix3f &Tbn, const Quaternion &quat) const;
|
|
|
|
// calculate the NED earth spin vector in rad/sec
|
|
void calcEarthRateNED(Vector3f &omega, int32_t latitude) const;
|
|
|
|
// calculate whether the flight vehicle is on the ground or flying from height, airspeed and GPS speed
|
|
void OnGroundCheck();
|
|
|
|
// initialise the covariance matrix
|
|
void CovarianceInit();
|
|
|
|
// update IMU delta angle and delta velocity measurements
|
|
void readIMUData();
|
|
|
|
// check for new valid GPS data and update stored measurement if available
|
|
void readGpsData();
|
|
|
|
// check for new altitude measurement data and update stored measurement if available
|
|
void readHgtData();
|
|
|
|
// check for new magnetometer data and update store measurements if available
|
|
void readMagData();
|
|
|
|
// check for new airspeed data and update stored measurements if available
|
|
void readAirSpdData();
|
|
|
|
// determine when to perform fusion of GPS position and velocity measurements
|
|
void SelectVelPosFusion();
|
|
|
|
// determine when to perform fusion of true airspeed measurements
|
|
void SelectTasFusion();
|
|
|
|
// determine when to perform fusion of synthetic sideslp measurements
|
|
void SelectBetaFusion();
|
|
|
|
// determine when to perform fusion of magnetometer measurements
|
|
void SelectMagFusion();
|
|
|
|
// force alignment of the yaw angle using GPS velocity data
|
|
void alignYawGPS();
|
|
|
|
// initialise the earth magnetic field states using declination and current attitude and magnetometer meaasurements
|
|
// and return attitude quaternion
|
|
Quaternion calcQuatAndFieldStates(float roll, float pitch);
|
|
|
|
// zero stored variables
|
|
void ZeroVariables();
|
|
|
|
// reset the horizontal position states uing the last GPS measurement
|
|
void ResetPosition(void);
|
|
|
|
// reset velocity states using the last GPS measurement
|
|
void ResetVelocity(void);
|
|
|
|
// reset the vertical position state using the last height measurement
|
|
void ResetHeight(void);
|
|
|
|
// return true if we should use the airspeed sensor
|
|
bool useAirspeed(void) const;
|
|
|
|
// return true if the vehicle code has requested use of static mode
|
|
// in static mode, position and height are constrained to zero, allowing an attitude
|
|
// reference to be initialised and maintained when on the ground and without GPS lock
|
|
bool static_mode_demanded(void) const;
|
|
|
|
// decay GPS horizontal position offset to close to zero at a rate of 1 m/s
|
|
// this allows large GPS position jumps to be accomodated gradually
|
|
void decayGpsOffset(void);
|
|
|
|
// EKF Mavlink Tuneable Parameters
|
|
AP_Float _gpsHorizVelNoise; // GPS horizontal velocity measurement noise : m/s
|
|
AP_Float _gpsVertVelNoise; // GPS vertical velocity measurement noise : m/s
|
|
AP_Float _gpsHorizPosNoise; // GPS horizontal position measurement noise m
|
|
AP_Float _baroAltNoise; // Baro height measurement noise : m^2
|
|
AP_Float _magNoise; // magnetometer measurement noise : gauss
|
|
AP_Float _easNoise; // equivalent airspeed measurement noise : m/s
|
|
AP_Float _windVelProcessNoise; // wind velocity state process noise : m/s^2
|
|
AP_Float _wndVarHgtRateScale; // scale factor applied to wind process noise due to height rate
|
|
AP_Float _magEarthProcessNoise; // earth magnetic field process noise : gauss/sec
|
|
AP_Float _magBodyProcessNoise; // earth magnetic field process noise : gauss/sec
|
|
AP_Float _gyrNoise; // gyro process noise : rad/s
|
|
AP_Float _accNoise; // accelerometer process noise : m/s^2
|
|
AP_Float _gyroBiasProcessNoise; // gyro bias state process noise : rad/s
|
|
AP_Float _accelBiasProcessNoise;// accel bias state process noise : m/s^2
|
|
AP_Int16 _msecVelDelay; // effective average delay of GPS velocity measurements rel to IMU (msec)
|
|
AP_Int16 _msecPosDelay; // effective average delay of GPS position measurements rel to (msec)
|
|
AP_Int8 _fusionModeGPS; // 0 = use 3D velocity, 1 = use 2D velocity, 2 = use no velocity
|
|
AP_Int8 _gpsVelInnovGate; // Number of standard deviations applied to GPS velocity innovation consistency check
|
|
AP_Int8 _gpsPosInnovGate; // Number of standard deviations applied to GPS position innovation consistency check
|
|
AP_Int8 _hgtInnovGate; // Number of standard deviations applied to height innovation consistency check
|
|
AP_Int8 _magInnovGate; // Number of standard deviations applied to magnetometer innovation consistency check
|
|
AP_Int8 _tasInnovGate; // Number of standard deviations applied to true airspeed innovation consistency check
|
|
AP_Int8 _magCal; // Forces magnetic field states to be always active to aid magnetometer calibration
|
|
AP_Int16 _gpsGlitchAccelMax; // Maximum allowed discrepancy between inertial and GPS Horizontal acceleration before GPS data is ignored : cm/s^2
|
|
AP_Int8 _gpsGlitchRadiusMax; // Maximum allowed discrepancy between inertial and GPS Horizontal position before GPS glitch is declared : m
|
|
|
|
// Tuning parameters
|
|
AP_Float _gpsNEVelVarAccScale; // scale factor applied to NE velocity measurement variance due to Vdot
|
|
AP_Float _gpsDVelVarAccScale; // scale factor applied to D velocity measurement variance due to Vdot
|
|
AP_Float _gpsPosVarAccScale; // scale factor applied to position measurement variance due to Vdot
|
|
AP_Int16 _msecHgtDelay; // effective average delay of height measurements rel to (msec)
|
|
AP_Int16 _msecMagDelay; // effective average delay of magnetometer measurements rel to IMU (msec)
|
|
AP_Int16 _msecTasDelay; // effective average delay of airspeed measurements rel to IMU (msec)
|
|
AP_Int16 _gpsRetryTimeUseTAS; // GPS retry time following innovation consistency fail if TAS measurements are used (msec)
|
|
AP_Int16 _gpsRetryTimeNoTAS; // GPS retry time following innovation consistency fail if no TAS measurements are used (msec)
|
|
AP_Int16 _hgtRetryTimeMode0; // height measurement retry time following innovation consistency fail if GPS fusion mode is = 0 (msec)
|
|
AP_Int16 _hgtRetryTimeMode12; // height measurement retry time following innovation consistency fail if GPS fusion mode is > 0 (msec)
|
|
float _gyroBiasNoiseScaler; // scale factor applied to gyro bias state process variance when on ground
|
|
float _magVarRateScale; // scale factor applied to magnetometer variance due to angular rate
|
|
uint16_t _msecGpsAvg; // average number of msec between GPS measurements
|
|
uint16_t _msecHgtAvg; // average number of msec between height measurements
|
|
uint16_t _msecBetaAvg; // maximum number of msec between synthetic sideslip measurements
|
|
float dtVelPos; // average of msec between position and velocity corrections
|
|
|
|
// Variables
|
|
uint8_t skipCounter; // counter used to skip position and height corrections to achieve _skipRatio
|
|
bool statesInitialised; // boolean true when filter states have been initialised
|
|
bool velHealth; // boolean true if velocity measurements have failed innovation consistency check
|
|
bool posHealth; // boolean true if position measurements have failed innovation consistency check
|
|
bool hgtHealth; // boolean true if height measurements have failed innovation consistency check
|
|
bool velTimeout; // boolean true if velocity measurements have failed innovation consistency check and timed out
|
|
bool posTimeout; // boolean true if position measurements have failed innovation consistency check and timed out
|
|
bool hgtTimeout; // boolean true if height measurements have failed innovation consistency check and timed out
|
|
|
|
Vector31 Kfusion; // Kalman gain vector
|
|
Matrix22 KH; // intermediate result used for covariance updates
|
|
Matrix22 KHP; // intermediate result used for covariance updates
|
|
Matrix22 P; // covariance matrix
|
|
VectorN<state_elements,50> storedStates; // state vectors stored for the last 50 time steps
|
|
uint32_t statetimeStamp[50]; // time stamp for each state vector stored
|
|
Vector3f correctedDelAng; // delta angles about the xyz body axes corrected for errors (rad)
|
|
Vector3f correctedDelVel12; // delta velocities along the XYZ body axes for weighted average of IMU1 and IMU2 corrected for errors (m/s)
|
|
Vector3f correctedDelVel1; // delta velocities along the XYZ body axes for IMU1 corrected for errors (m/s)
|
|
Vector3f correctedDelVel2; // delta velocities along the XYZ body axes for IMU2 corrected for errors (m/s)
|
|
Vector3f summedDelAng; // corrected & summed delta angles about the xyz body axes (rad)
|
|
Vector3f summedDelVel; // corrected & summed delta velocities along the XYZ body axes (m/s)
|
|
Vector3f prevDelAng; // previous delta angle use for INS coning error compensation
|
|
Matrix3f prevTnb; // previous nav to body transformation used for INS earth rotation compensation
|
|
ftype accNavMag; // magnitude of navigation accel - used to adjust GPS obs variance (m/s^2)
|
|
ftype accNavMagHoriz; // magnitude of navigation accel in horizontal plane (m/s^2)
|
|
Vector3f earthRateNED; // earths angular rate vector in NED (rad/s)
|
|
Vector3f dVelIMU1; // delta velocity vector in XYZ body axes measured by IMU1 (m/s)
|
|
Vector3f dVelIMU2; // delta velocity vector in XYZ body axes measured by IMU2 (m/s)
|
|
Vector3f dAngIMU; // delta angle vector in XYZ body axes measured by the IMU (rad)
|
|
ftype dtIMU; // time lapsed since the last IMU measurement (sec)
|
|
ftype dt; // time lapsed since the last covariance prediction (sec)
|
|
ftype hgtRate; // state for rate of change of height filter
|
|
bool onGround; // boolean true when the flight vehicle is on the ground (not flying)
|
|
bool prevOnGround; // value of onGround from previous update
|
|
Vector6 innovVelPos; // innovation output for a group of measurements
|
|
Vector6 varInnovVelPos; // innovation variance output for a group of measurements
|
|
bool fuseVelData; // this boolean causes the velNED measurements to be fused
|
|
bool fusePosData; // this boolean causes the posNE measurements to be fused
|
|
bool fuseHgtData; // this boolean causes the hgtMea measurements to be fused
|
|
Vector3f velNED; // North, East, Down velocity measurements (m/s)
|
|
Vector2 posNE; // North, East position measurements (m)
|
|
ftype hgtMea; // height measurement relative to reference point (m)
|
|
state_elements statesAtVelTime; // States at the effective time of velNED measurements
|
|
state_elements statesAtPosTime; // States at the effective time of posNE measurements
|
|
state_elements statesAtHgtTime; // States at the effective time of hgtMea measurement
|
|
Vector3f innovMag; // innovation output from fusion of X,Y,Z compass measurements
|
|
Vector3f varInnovMag; // innovation variance output from fusion of X,Y,Z compass measurements
|
|
bool fuseMagData; // boolean true when magnetometer data is to be fused
|
|
Vector3f magData; // magnetometer flux readings in X,Y,Z body axes
|
|
state_elements statesAtMagMeasTime; // filter states at the effective time of compass measurements
|
|
ftype innovVtas; // innovation output from fusion of airspeed measurements
|
|
ftype varInnovVtas; // innovation variance output from fusion of airspeed measurements
|
|
bool fuseVtasData; // boolean true when airspeed data is to be fused
|
|
float VtasMeas; // true airspeed measurement (m/s)
|
|
state_elements statesAtVtasMeasTime; // filter states at the effective measurement time
|
|
Vector3f magBias; // magnetometer bias vector in XYZ body axes
|
|
const ftype covTimeStepMax; // maximum time allowed between covariance predictions
|
|
const ftype covDelAngMax; // maximum delta angle between covariance predictions
|
|
bool covPredStep; // boolean set to true when a covariance prediction step has been performed
|
|
bool magFusePerformed; // boolean set to true when magnetometer fusion has been perfomred in that time step
|
|
bool magFuseRequired; // boolean set to true when magnetometer fusion will be perfomred in the next time step
|
|
bool posVelFuseStep; // boolean set to true when position and velocity fusion is being performed
|
|
bool tasFuseStep; // boolean set to true when airspeed fusion is being performed
|
|
uint32_t TASmsecPrev; // time stamp of last TAS fusion step
|
|
uint32_t BETAmsecPrev; // time stamp of last synthetic sideslip fusion step
|
|
const uint32_t TASmsecMax; // maximum allowed interval between TAS fusion steps
|
|
uint32_t MAGmsecPrev; // time stamp of last compass fusion step
|
|
uint32_t HGTmsecPrev; // time stamp of last height measurement fusion step
|
|
const bool fuseMeNow; // boolean to force fusion whenever data arrives
|
|
bool staticMode; // boolean to force position and velocity measurements to zero for pre-arm or bench testing
|
|
bool prevStaticMode; // value of static mode from last update
|
|
uint32_t lastMagUpdate; // last time compass was updated
|
|
Vector3f velDotNED; // rate of change of velocity in NED frame
|
|
Vector3f velDotNEDfilt; // low pass filtered velDotNED
|
|
uint32_t lastAirspeedUpdate; // last time airspeed was updated
|
|
uint32_t IMUmsec; // time that the last IMU value was taken
|
|
ftype gpsCourse; // GPS ground course angle(rad)
|
|
ftype gpsGndSpd; // GPS ground speed (m/s)
|
|
bool newDataGps; // true when new GPS data has arrived
|
|
bool newDataMag; // true when new magnetometer data has arrived
|
|
float gpsVarScaler; // scaler applied to gps measurement variance to allow for oversampling
|
|
bool newDataTas; // true when new airspeed data has arrived
|
|
bool tasDataWaiting; // true when new airspeed data is waiting to be fused
|
|
bool newDataHgt; // true when new height data has arrived
|
|
uint32_t lastHgtMeasTime; // time of last height measurement used to determine if new data has arrived
|
|
uint32_t lastHgtTime_ms; // time of last height update (msec) used to calculate timeout
|
|
float hgtVarScaler; // scaler applied to height measurement variance to allow for oversampling
|
|
uint32_t velFailTime; // time stamp when GPS velocity measurement last failed covaraiance consistency check (msec)
|
|
uint32_t posFailTime; // time stamp when GPS position measurement last failed covaraiance consistency check (msec)
|
|
uint32_t hgtFailTime; // time stamp when height measurement last failed covaraiance consistency check (msec)
|
|
uint8_t storeIndex; // State vector storage index
|
|
uint32_t lastStateStoreTime_ms; // time of last state vector storage
|
|
uint32_t lastFixTime_ms; // time of last GPS fix used to determine if new data has arrived
|
|
uint32_t secondLastFixTime_ms; // time of second last GPS fix used to determine how long since last update
|
|
Vector3f lastAngRate; // angular rate from previous IMU sample used for trapezoidal integrator
|
|
Vector3f lastAccel1; // acceleration from previous IMU1 sample used for trapezoidal integrator
|
|
Vector3f lastAccel2; // acceleration from previous IMU2 sample used for trapezoidal integrator
|
|
Matrix22 nextP; // Predicted covariance matrix before addition of process noise to diagonals
|
|
Vector22 processNoise; // process noise added to diagonals of predicted covariance matrix
|
|
Vector15 SF; // intermediate variables used to calculate predicted covariance matrix
|
|
Vector8 SG; // intermediate variables used to calculate predicted covariance matrix
|
|
Vector11 SQ; // intermediate variables used to calculate predicted covariance matrix
|
|
Vector8 SPP; // intermediate variables used to calculate predicted covariance matrix
|
|
float IMU1_weighting; // Weighting applied to use of IMU1. Varies between 0 and 1.
|
|
bool yawAligned; // true when the yaw angle has been aligned
|
|
float posnOffsetNorth; // offset applied to GPS data in the north direction to compensate for rapid changes in GPS solution
|
|
float posnOffsetEast; // offset applied to GPS data in the north direction to compensate for rapid changes in GPS solution
|
|
uint32_t lastDecayTime_ms; // time of last decay of GPS position offset
|
|
float velTestRatio; // sum of squares of GPS velocity innovation divided by fail threshold
|
|
float posTestRatio; // sum of squares of GPS position innovation divided by fail threshold
|
|
float hgtTestRatio; // sum of squares of baro height innovation divided by fail threshold
|
|
Vector3f magTestRatio; // sum of squares of magnetometer innovations divided by fail threshold
|
|
float tasTestRatio; // sum of squares of true airspeed innovation divided by fail threshold
|
|
|
|
// states held by magnetomter fusion across time steps
|
|
// magnetometer X,Y,Z measurements are fused across three time steps
|
|
// to level computational load as this is an expensive operation
|
|
struct {
|
|
ftype q0;
|
|
ftype q1;
|
|
ftype q2;
|
|
ftype q3;
|
|
ftype magN;
|
|
ftype magE;
|
|
ftype magD;
|
|
ftype magXbias;
|
|
ftype magYbias;
|
|
ftype magZbias;
|
|
uint8_t obsIndex;
|
|
Matrix3f DCM;
|
|
Vector3f MagPred;
|
|
ftype R_MAG;
|
|
ftype SH_MAG[9];
|
|
} mag_state;
|
|
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
|
|
// performance counters
|
|
perf_counter_t _perf_UpdateFilter;
|
|
perf_counter_t _perf_CovariancePrediction;
|
|
perf_counter_t _perf_FuseVelPosNED;
|
|
perf_counter_t _perf_FuseMagnetometer;
|
|
perf_counter_t _perf_FuseAirspeed;
|
|
perf_counter_t _perf_FuseSideslip;
|
|
#endif
|
|
|
|
// should we use the compass?
|
|
bool use_compass(void) const;
|
|
};
|
|
|
|
#if CONFIG_HAL_BOARD != HAL_BOARD_PX4
|
|
#define perf_begin(x)
|
|
#define perf_end(x)
|
|
#endif
|
|
|
|
#endif // AP_NavEKF
|